Conditions under which the exterior spherically symmetric solution to the equations of the relativistic theory of gravitation is physical
Teoretičeskaâ i matematičeskaâ fizika, Tome 84 (1990) no. 3, pp. 474-480 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The condition under which a spherically symmetric gravitational field is physical in the relativistic theory of gravitation is analyzed. It is shown that this condition restricts the value of the constant that appears in the exterior spherically symmetric stationary solution to the equations of the relativistic theory of gravitation.
@article{TMF_1990_84_3_a12,
     author = {P. V. Karabut and Yu. V. Chugreev},
     title = {Conditions under which the exterior spherically symmetric solution to~the equations of~the relativistic theory of~gravitation is~physical},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {474--480},
     year = {1990},
     volume = {84},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1990_84_3_a12/}
}
TY  - JOUR
AU  - P. V. Karabut
AU  - Yu. V. Chugreev
TI  - Conditions under which the exterior spherically symmetric solution to the equations of the relativistic theory of gravitation is physical
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1990
SP  - 474
EP  - 480
VL  - 84
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1990_84_3_a12/
LA  - ru
ID  - TMF_1990_84_3_a12
ER  - 
%0 Journal Article
%A P. V. Karabut
%A Yu. V. Chugreev
%T Conditions under which the exterior spherically symmetric solution to the equations of the relativistic theory of gravitation is physical
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1990
%P 474-480
%V 84
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1990_84_3_a12/
%G ru
%F TMF_1990_84_3_a12
P. V. Karabut; Yu. V. Chugreev. Conditions under which the exterior spherically symmetric solution to the equations of the relativistic theory of gravitation is physical. Teoretičeskaâ i matematičeskaâ fizika, Tome 84 (1990) no. 3, pp. 474-480. http://geodesic.mathdoc.fr/item/TMF_1990_84_3_a12/

[1] Logunov A. A., Mestvirishvili M. A., Relyativistskaya teoriya gravitatsii, Nauka, M., 1989 | MR

[2] Mestvirishvili M. A., Chugreev Yu. V., Fridmanovskaya model evolyutsii Vselennoi v relyativistskoi teorii gravitatsii, MGU, M., 1988

[3] Landau L. D., Lifshits E. M., Teoriya polya, Nauka, M., 1973 | MR

[4] Avakyan R. M., Tochnye resheniya uravnenii Einshteina i ikh fizicheskaya interpretatsiya, Izd-vo Tartuskogo un-ta, Tartu, 1988, 22–24

[5] Vlasov A. A., Logunov A. A., TMF, 66:2 (1986), 163–173 | MR | Zbl

[6] Chandrasekar S., Matematicheskaya teoriya chernykh dyr, Ch. 1, Mir, M., 1986 | MR

[7] Karabut P. V., Chugreev Yu. V., Vneshnee sfericheski-simmetrichnoe reshenie uravnenii relyativistskoi teorii gravitatsii, Preprint 89-40/117, NIIYaF MGU, M., 1989