Discrete operator fields as carriers of causal spacetime structure. Internal symmetry
Teoretičeskaâ i matematičeskaâ fizika, Tome 84 (1990) no. 3, pp. 339-352 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An attempt is made to set up a model of spacetime in the form of a discrete, causally ordered set of local elements – uniform sets of field operators. An algebraic description of the causal connection between two such elements that are nearest neighbors in accordance with the ordering is constructed by means of a specially formulated principle of correspondence with Lagrangian gauge theory. A necessary condition for the possibility of the construction is the requirement that the internal symmetry group be $SU(20)$, the spin $1/2$ fermions form a multiplet of dimension (190), and the spinless bosons a multiplet of dimension (35700). The possibility of interpreting the proposed special class of solutions of the constructed equation as a discrete spacetime net is discussed.
@article{TMF_1990_84_3_a1,
     author = {G. L. Stavraki},
     title = {Discrete operator fields as~carriers of~causal spacetime structure. {Internal} symmetry},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {339--352},
     year = {1990},
     volume = {84},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1990_84_3_a1/}
}
TY  - JOUR
AU  - G. L. Stavraki
TI  - Discrete operator fields as carriers of causal spacetime structure. Internal symmetry
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1990
SP  - 339
EP  - 352
VL  - 84
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1990_84_3_a1/
LA  - ru
ID  - TMF_1990_84_3_a1
ER  - 
%0 Journal Article
%A G. L. Stavraki
%T Discrete operator fields as carriers of causal spacetime structure. Internal symmetry
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1990
%P 339-352
%V 84
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1990_84_3_a1/
%G ru
%F TMF_1990_84_3_a1
G. L. Stavraki. Discrete operator fields as carriers of causal spacetime structure. Internal symmetry. Teoretičeskaâ i matematičeskaâ fizika, Tome 84 (1990) no. 3, pp. 339-352. http://geodesic.mathdoc.fr/item/TMF_1990_84_3_a1/

[1] Wheeler J. A., Einsteins Wision, Springer-Verlag, Berlin, 1968 | Zbl

[2] Markov M. A., Fizika vysokikh energii i teoriya elementarnykh chastits, Naukova dumka, Kiev, 1967, 671–678 | MR

[3] Stanyukovich K. P., Problemy gravitatsii i elementarnykh chastits, no. 2, Atomizdat, M., 1969, 1–20

[4] Hawking S. W., Nucl. Phys., B114 (1987), 346–357 | MR

[5] Pimenov R. I., Zap. nauchn. semin. LOMI, 6, 1968, 1–496 | MR | Zbl

[6] De Vitt B. S., Dinamicheskaya teoriya grupp i polei, Nauka, M., 1987 | MR

[7] Stavraki G. L., Fizika vysokikh energii i teoriya elementarnykh chastits, Naukova dumka, Kiev, 1967, 296–312 | MR

[8] Striter R., Vaitman A., RST, spin i statistika i vse takoe, Nauka, M., 1966

[9] Zavyalov O. I., Perenormirovannye diagrammy Feinmana, Nauka, M., 1979 | MR

[10] Vaitman A., Problemy v relyativistskoi dinamike kvantovannykh polei, Nauka, M., 1968

[11] Barut A., Ronchka R., Teoriya predstavlenii grupp i ee prilozheniya, Mir, M., 1980 | MR | Zbl

[12] Burbaki N., Gruppy i algebry Li, Gl. IV–VI, Mir, M., 1972 ; Гл. VII–VIII | MR | Zbl

[13] Penrouz R., Obschaya teoriya otnositelnosti, Mir, M., 1983, 233–295 | MR

[14] Linde A. D., UFN, 144 (1984), 177–215 | DOI

[15] Bacry H., Lect. Notes Phys., 308, 1988, 1–81 | MR

[16] Hannabus K., New Sci., 119:1625 (1988), 52–56