Wave scattering in a randomly inhomogeneous medium with long-range noise correlation function $\sim1/r$
Teoretičeskaâ i matematičeskaâ fizika, Tome 84 (1990) no. 2, pp. 250-261 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A simplified scalar model of the propagation of light in liquid crystals is considered: a monochromatic plane wave propagating normally to the boundary in a half-space filled with a randomly inhomogeneous medium with a long-range homogeneous isotropic noise correlation function $D(r)\sim1/r$ (Goldstone fluctuations). In the eikonal approximation, which is valid for small scattering angles $\theta$ and not too large depth $z$ of penetration into the medium, the ray intensity $I_p(z,\theta)$ of the scattered light is calculated. The results make it possible to explain why intense spreading of a laser beam in nematics is observed experimentally for the extraordinary mode only at distances several times greater than the damping length of the coherent component.
@article{TMF_1990_84_2_a8,
     author = {L. Ts. Adzhemyan and A. N. Vasil'ev and M. M. Perekalin and Kh. Yu. Reittu},
     title = {Wave scattering in~a~randomly inhomogeneous medium with long-range noise correlation function $\sim1/r$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {250--261},
     year = {1990},
     volume = {84},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1990_84_2_a8/}
}
TY  - JOUR
AU  - L. Ts. Adzhemyan
AU  - A. N. Vasil'ev
AU  - M. M. Perekalin
AU  - Kh. Yu. Reittu
TI  - Wave scattering in a randomly inhomogeneous medium with long-range noise correlation function $\sim1/r$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1990
SP  - 250
EP  - 261
VL  - 84
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1990_84_2_a8/
LA  - ru
ID  - TMF_1990_84_2_a8
ER  - 
%0 Journal Article
%A L. Ts. Adzhemyan
%A A. N. Vasil'ev
%A M. M. Perekalin
%A Kh. Yu. Reittu
%T Wave scattering in a randomly inhomogeneous medium with long-range noise correlation function $\sim1/r$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1990
%P 250-261
%V 84
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1990_84_2_a8/
%G ru
%F TMF_1990_84_2_a8
L. Ts. Adzhemyan; A. N. Vasil'ev; M. M. Perekalin; Kh. Yu. Reittu. Wave scattering in a randomly inhomogeneous medium with long-range noise correlation function $\sim1/r$. Teoretičeskaâ i matematičeskaâ fizika, Tome 84 (1990) no. 2, pp. 250-261. http://geodesic.mathdoc.fr/item/TMF_1990_84_2_a8/

[1] Rytov S. M., Kravtsov Yu. A., Tatarskii V. I., Vvedenie v statisticheskuyu radiofiziku, Ch. 2, Nauka, M., 1978 | MR

[2] Apresyan L. A., Kravtsov Yu. A., Teoriya perenosa izlucheniya, Nauka, M., 1983

[3] Adzhemyan L. Ts., Vasilev A. N., Pismak Yu. M., TMF, 68:3 (1986), 323–337 ; 74:3 (1988), 360–372 | MR

[4] Adzhemyan L. Ts., Vasilev A. N., Perekalin M. M., Reittu Kh. Yu., ZhETF, 96:4 (1989), 1278–1285

[5] Keiz K., Tsvaifel P., Lineinaya teoriya perenosa, Mir, M., 1972

[6] Popov V. N., Kontinualnye integraly v kvantovoi teorii polya i statisticheskoi fizike, Atomizdat, M., 1976 | MR

[7] Valkov A. Yu., Zubkov L. A., Kovshik A. P., Romanov V. P., Pisma v ZhETF, 40 (1984), 281–283

[8] Gersch H. A., Holm W. A., Phys. Rev., B14:3 (1976), 1307–1313 | DOI

[9] Barabanenkov Yu. N., Stainova E. G., Opt. i spektr., 63:2 (1987), 362–368 | MR

[10] Adzhemyan L. Ts., Vasilev A. N., Pismak Yu. M., TMF, 78:2 (1989), 200–214 | MR