Supersymmetry and kinetic properties of one-dimensional disordered systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 84 (1990) no. 2, pp. 211-222 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Equations are derived for the two-particle Green's functions of one-dimensional disordered systems by integration with respect to commuting and anticommuting variables. Expressions are obtained for the conductivity and the density–density correlation function for both arbitrary values of the energy and in the semiclassical domain, when the particle energy appreciably exceeds the intensity of the random potential.
@article{TMF_1990_84_2_a5,
     author = {T. N. Antsygina and V. A. Slyusarev},
     title = {Supersymmetry and kinetic properties of~one-dimensional disordered systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {211--222},
     year = {1990},
     volume = {84},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1990_84_2_a5/}
}
TY  - JOUR
AU  - T. N. Antsygina
AU  - V. A. Slyusarev
TI  - Supersymmetry and kinetic properties of one-dimensional disordered systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1990
SP  - 211
EP  - 222
VL  - 84
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1990_84_2_a5/
LA  - ru
ID  - TMF_1990_84_2_a5
ER  - 
%0 Journal Article
%A T. N. Antsygina
%A V. A. Slyusarev
%T Supersymmetry and kinetic properties of one-dimensional disordered systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1990
%P 211-222
%V 84
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1990_84_2_a5/
%G ru
%F TMF_1990_84_2_a5
T. N. Antsygina; V. A. Slyusarev. Supersymmetry and kinetic properties of one-dimensional disordered systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 84 (1990) no. 2, pp. 211-222. http://geodesic.mathdoc.fr/item/TMF_1990_84_2_a5/

[1] Lifshits I. M., Gredeskul S. A., Pastur L. A., Vvedenie v teoriyu neuporyadochennykh sistem, Nauka, M., 1982 | MR

[2] Efetov K. B., Adv. in Phys., 32:1 (1983), 53–127 | DOI | MR

[3] Bohr T., Efetov K. B., J. Phys. C, 15:9 (1982), L249–L254 | DOI

[4] Hayn R., John W., Z. Phys. B, 67:1 (1987), 169–177 | DOI

[5] Efetov K. B., Larkin A. I., ZhETF, 85:2 (1983), 764–778

[6] Halperin B. I., Adv. Chem. Phys., 13:1 (1967), 123–177 | DOI

[7] Bychkov Yu. A., ZhETF, 65:1 (1973), 427–438

[8] Antsygina T. N., Pastur L. A., Slyusarev V. A., FNT, 7:1 (1981), 5–44

[9] Berezinskii V. L., ZhETF, 65:3 (1973), 1251–1266

[10] Abrikosov A. A., Ryzhkin I. A., Adv. in Phys., 27:1 (1978), 53–127

[11] Feinman R., Khibs A., Kvantovaya mekhanika i integraly po traektoriyam, Mir, M., 1968 | MR

[12] Yu. A. Firsov (red.), Polyarony, Nauka, M., 1975 | Zbl

[13] Shveber S., Vvedenie v relyativistskuyu kvantovuyu teoriyu, IL, M., 1963

[14] Slyusarev V. A., Strzhemechnyi M. A., UFZh, 14:3 (1969), 453–460

[15] Slavnov A. A., Faddeev L. D., Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1978 | MR