Vacuum polarization of a scalar field in anisotropic multidimensional cosmology
Teoretičeskaâ i matematičeskaâ fizika, Tome 84 (1990) no. 2, pp. 304-313
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An original method is proposed for calculating the semiclassical vacuum effective action for a scalar field in a multidimensional universe that is nonstationary in all dimensions, has metric that generalizes the Bianchi type I, and has toroidally compactified spacelike dimensions (some or all of them). It is noted that the number of terms that can be retained in the adiabatic expansion is restricted and proportional to the dimension of the open subspace. This is due to the presence of a “zero mode”, which also leads to the appearance of logarithmic terms. Examples with three-dimensional open subspace and one or two compact additional dimensions are considered as illustrations.
@article{TMF_1990_84_2_a12,
     author = {V. M. Dragilev},
     title = {Vacuum polarization of~a~scalar field in~anisotropic multidimensional cosmology},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {304--313},
     year = {1990},
     volume = {84},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1990_84_2_a12/}
}
TY  - JOUR
AU  - V. M. Dragilev
TI  - Vacuum polarization of a scalar field in anisotropic multidimensional cosmology
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1990
SP  - 304
EP  - 313
VL  - 84
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1990_84_2_a12/
LA  - ru
ID  - TMF_1990_84_2_a12
ER  - 
%0 Journal Article
%A V. M. Dragilev
%T Vacuum polarization of a scalar field in anisotropic multidimensional cosmology
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1990
%P 304-313
%V 84
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1990_84_2_a12/
%G ru
%F TMF_1990_84_2_a12
V. M. Dragilev. Vacuum polarization of a scalar field in anisotropic multidimensional cosmology. Teoretičeskaâ i matematičeskaâ fizika, Tome 84 (1990) no. 2, pp. 304-313. http://geodesic.mathdoc.fr/item/TMF_1990_84_2_a12/

[1] Appelguist T., Chodos A., Phys. Rev. Lett., 50:3 (1983), 141–145 | DOI | MR

[2] Toms D. J., Phys. Lett., 129:1–2 (1983), 31–35 | DOI | MR

[3] Candelas P., Weinberg S., Nucl. Phys., 237:3 (1984), 397–441 | DOI | MR

[4] Toms D. J., Can. J. Phys., 64:5 (1986), 644–652 | DOI

[5] Bukhbinder I. L., Dergalev V. P., Odintsov S. D., TMF, 80:1 (1989), 150–159 | MR

[6] Chodos A., Detweiler S., Phys. Rev., D21:8 (1980), 2167–2170 | MR

[7] Copeland E. J., Toms D. J., Phys. Rev., D32:8 (1985), 1921–1927 | MR

[8] Gilbert G., Mc Clain B., Bubin M. A., Phys. Lett., B142:1–2 (1984), 28–34 | DOI

[9] Gilbert G., Mc Clain B., Nucl. Phys., B244:1 (1984), 173–185 | DOI

[10] Vereshkov G. M., Grishkan Yu. S. i dr., ZhETF, 73:6 (1977), 1985–2007 | MR

[11] Beilin V. A., Vereshkov G. M. i dr., ZhETF, 78:6 (1980), 2081–2098 | MR

[12] Vereshkov G. M., Korotun A. V., Urnysheva L. V., Vsesoyuz. konf. «Sovremennye teoreticheskie i eksperimentalnye problemy teorii otnositelnosti i gravitatsii», Tez. dokl., M., 1984, 192–193

[13] Vereshkov G. M., Dragilev V. M., Ponomarev V. N., RZh «Astronomiya». Dep. v VINITI 28.04.86. No 3097-V86, 1986

[14] Vereshkov G. M., Dragilev V. M., Ponomarev V. N., Izv. vuzov. Fiz., 31:9 (1988), 5–9

[15] Grib A. A., Mamaev S. G., Mostepanenko V. M., Vakuumnye kvantovye effekty v silnykh polyakh, Energoatomizdat, M., 1988