A~representation of~the Mayer expansion coefficients and virial coefficients
Teoretičeskaâ i matematičeskaâ fizika, Tome 84 (1990) no. 2, pp. 279-289
Voir la notice de l'article provenant de la source Math-Net.Ru
A new representation of the Mayer expansion coefficients and the virial coefficients is given. The essence of the new representation of the Mayer expansion coefficients is the replacement of the sum of integrals over all connected graphs with $n$ vertices by a sum of integrals over all trees with $n$ vertices. The essence of the new representation of the virial coefficients consists of replacement of the sum of integrals over all blocks with $n$ vertices by a sum of integrals over all blocks that are characteristic for certain blocks with $n$ vertices. As an application, a simple derivation is given of the well-known estimates for the radius of convergence of the Mayer expansion in the case of a non-negative potential.
@article{TMF_1990_84_2_a10,
author = {G. I. Kalmykov},
title = {A~representation of~the {Mayer} expansion coefficients and virial coefficients},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {279--289},
publisher = {mathdoc},
volume = {84},
number = {2},
year = {1990},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1990_84_2_a10/}
}
TY - JOUR AU - G. I. Kalmykov TI - A~representation of~the Mayer expansion coefficients and virial coefficients JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1990 SP - 279 EP - 289 VL - 84 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1990_84_2_a10/ LA - ru ID - TMF_1990_84_2_a10 ER -
G. I. Kalmykov. A~representation of~the Mayer expansion coefficients and virial coefficients. Teoretičeskaâ i matematičeskaâ fizika, Tome 84 (1990) no. 2, pp. 279-289. http://geodesic.mathdoc.fr/item/TMF_1990_84_2_a10/