A representation of the Mayer expansion coefficients and virial coefficients
Teoretičeskaâ i matematičeskaâ fizika, Tome 84 (1990) no. 2, pp. 279-289
Cet article a éte moissonné depuis la source Math-Net.Ru
A new representation of the Mayer expansion coefficients and the virial coefficients is given. The essence of the new representation of the Mayer expansion coefficients is the replacement of the sum of integrals over all connected graphs with $n$ vertices by a sum of integrals over all trees with $n$ vertices. The essence of the new representation of the virial coefficients consists of replacement of the sum of integrals over all blocks with $n$ vertices by a sum of integrals over all blocks that are characteristic for certain blocks with $n$ vertices. As an application, a simple derivation is given of the well-known estimates for the radius of convergence of the Mayer expansion in the case of a non-negative potential.
@article{TMF_1990_84_2_a10,
author = {G. I. Kalmykov},
title = {A~representation of~the {Mayer} expansion coefficients and virial coefficients},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {279--289},
year = {1990},
volume = {84},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1990_84_2_a10/}
}
G. I. Kalmykov. A representation of the Mayer expansion coefficients and virial coefficients. Teoretičeskaâ i matematičeskaâ fizika, Tome 84 (1990) no. 2, pp. 279-289. http://geodesic.mathdoc.fr/item/TMF_1990_84_2_a10/
[1] Maier Dzh., Geppert-Maier M., Statisticheskaya mekhanika, Mir, M., 1980
[2] Ryuel D., Statisticheskaya mekhanika. Strogie rezultaty, Mir, M., 1971
[3] Ulenbek Dzh., Ford Dzh., Lektsii po statisticheskoi mekhanike, Mir, M., 1965
[4] Kuni F. M., Statisticheskaya fizika i termodinamika, Nauka, M., 1981 | Zbl
[5] Toda M., Kubo R., Saito N., Statistical Physics. 1. Equilibrium Statistical Mechanics, Springer-Verlag, Berlin, 1983 | MR
[6] Kharari F., Teoriya grafov, Mir, M., 1973 | MR
[7] Groeneveld J., Phys. Lett., 3 (1962), 50–51 | DOI | MR | Zbl
[8] Reichl L. E., A modern Course in Statistical Physics, Arnold, London, 1980 | MR
[9] Zubarev D. N., DAN SSSR, 118:5 (1958), 903–906 | Zbl