Geometry of~dual two-dimensional nonlinear $\sigma$~models
Teoretičeskaâ i matematičeskaâ fizika, Tome 84 (1990) no. 2, pp. 173-180
Voir la notice de l'article provenant de la source Math-Net.Ru
Geometrical aspects of duality in two-dimensional nonlinear $\sigma$ models are considered. The metric and torsion potential are found explicitly for the dual versions of two theories: a) the dimensional reduction to $d=2$ of the self-interaction of an $N=2$, $d=4$ tensor supermultiplet represented by a sum of an “unimproved” (linear) and “improved” (nonlinear) free action, b) the two-dimensional Freedman–Townsend model. The single- and two-loop $\beta$ functions have been calculated (on a computer).
@article{TMF_1990_84_2_a1,
author = {S. V. Ketov and K. E. Osetrin and Ya. S. Prager},
title = {Geometry of~dual two-dimensional nonlinear $\sigma$~models},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {173--180},
publisher = {mathdoc},
volume = {84},
number = {2},
year = {1990},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1990_84_2_a1/}
}
TY - JOUR AU - S. V. Ketov AU - K. E. Osetrin AU - Ya. S. Prager TI - Geometry of~dual two-dimensional nonlinear $\sigma$~models JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1990 SP - 173 EP - 180 VL - 84 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1990_84_2_a1/ LA - ru ID - TMF_1990_84_2_a1 ER -
S. V. Ketov; K. E. Osetrin; Ya. S. Prager. Geometry of~dual two-dimensional nonlinear $\sigma$~models. Teoretičeskaâ i matematičeskaâ fizika, Tome 84 (1990) no. 2, pp. 173-180. http://geodesic.mathdoc.fr/item/TMF_1990_84_2_a1/