Geometry of dual two-dimensional nonlinear $\sigma$ models
Teoretičeskaâ i matematičeskaâ fizika, Tome 84 (1990) no. 2, pp. 173-180 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Geometrical aspects of duality in two-dimensional nonlinear $\sigma$ models are considered. The metric and torsion potential are found explicitly for the dual versions of two theories: a) the dimensional reduction to $d=2$ of the self-interaction of an $N=2$, $d=4$ tensor supermultiplet represented by a sum of an “unimproved” (linear) and “improved” (nonlinear) free action, b) the two-dimensional Freedman–Townsend model. The single- and two-loop $\beta$ functions have been calculated (on a computer).
@article{TMF_1990_84_2_a1,
     author = {S. V. Ketov and K. E. Osetrin and Ya. S. Prager},
     title = {Geometry of~dual two-dimensional nonlinear $\sigma$~models},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {173--180},
     year = {1990},
     volume = {84},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1990_84_2_a1/}
}
TY  - JOUR
AU  - S. V. Ketov
AU  - K. E. Osetrin
AU  - Ya. S. Prager
TI  - Geometry of dual two-dimensional nonlinear $\sigma$ models
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1990
SP  - 173
EP  - 180
VL  - 84
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1990_84_2_a1/
LA  - ru
ID  - TMF_1990_84_2_a1
ER  - 
%0 Journal Article
%A S. V. Ketov
%A K. E. Osetrin
%A Ya. S. Prager
%T Geometry of dual two-dimensional nonlinear $\sigma$ models
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1990
%P 173-180
%V 84
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1990_84_2_a1/
%G ru
%F TMF_1990_84_2_a1
S. V. Ketov; K. E. Osetrin; Ya. S. Prager. Geometry of dual two-dimensional nonlinear $\sigma$ models. Teoretičeskaâ i matematičeskaâ fizika, Tome 84 (1990) no. 2, pp. 173-180. http://geodesic.mathdoc.fr/item/TMF_1990_84_2_a1/

[1] Mizner I., Torn K., Uiler Dzh., Gravitatsiya, T. 2, Mir, M., 1977 | MR

[2] Polyakov A. M., Phys. Lett. B, 103:2 (1981), 207–213 | DOI | MR

[3] Tseitlin A. A., YaF, 40:5 (1984), 1363–1370

[4] Callan C. G., Friedan D., Martinec E. J., Perry M. J., Nucl. Phys. B, 262:4 (1985), 593–609 | DOI | MR

[5] Buscher T. H., Phys. Lett. B, 194:1 (1987), 59–63 ; 201:4 (1988), 466–472 | DOI | MR | DOI | MR

[6] de Wit B., Philippe R., van Proeyen A., Nucl. Phys. B, 219:1 (1983), 143–166 | DOI

[7] Lindström U., Rocek M., Nucl. Phys. B, 222:2 (1983), 285–308 | DOI | MR

[8] Ketov S. V., Int. J. Mod. Phys. A, 3:4 (1988), 703–728 | DOI | MR

[9] Ketov S. V., Tyutin I. V., Pisma v ZhETF, 39:1 (1984), 573–576 ; ЯФ, 41:11 (1985), 1350–1360 | MR

[10] Galperin A., Ivanov E., Ogievetsky F., Nucl. Phys. B, 282:1 (1987), 74–102 | DOI | MR

[11] Ketov S. V., Fortschr. Phys., 36:6 (1988), 361–425 | DOI | MR

[12] Ketov S. V., Lokhvitskii B. B., Tyutin I. V., TMF, 71:2 (1987), 226–237 | MR

[13] Freedman D. Z., Townsend P. K., Nucl. Phys. B, 177:2 (1981), 282–296 | DOI | MR

[14] Batalin I. A., Vilkovisky G. A., Phys. Lett. B, 120:2 (1983), 166–171 | DOI | MR

[15] de Alvis S. P., Grisaru M. T., Mezincescu L., Phys. Lett. B, 190:1–2 (1987), 122–125 | MR

[16] Braaten E., Curtright T. L., Zachos C. K., Nucl. Phys. B, 260:3 (1985), 630–688 | DOI | MR

[17] Ketov S. F., Nucl. Phys. B, 294:3 (1987), 813–844 | DOI | MR

[18] Zanon D., Phys. Lett. B, 191:4 (1987), 363–368 | DOI | MR