Universal regularizations.
Teoretičeskaâ i matematičeskaâ fizika, Tome 84 (1990) no. 1, pp. 46-63
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Rules are formulated for a “universal” ultraviolet regularization (different from dimensional) designed to preserve internal syrmnetries in nonanomalous situations. The regularization reduces to the integration (with a certain weight) of Feynman diagrams over specially introduced “soft masses” (which appear as a result of “extending” the loop momenta). Single-loop examples for Abelian and non-Abelian gauge theories are considered. It is shown that the “universal” regularization is indeed consistent with the corresponding symmetries. The occurrence of the actual anomaly is discussed in terms of the “universal” regularization.
@article{TMF_1990_84_1_a4,
     author = {O. I. Zavialov and A. M. Malokostov},
     title = {Universal regularizations.},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {46--63},
     year = {1990},
     volume = {84},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1990_84_1_a4/}
}
TY  - JOUR
AU  - O. I. Zavialov
AU  - A. M. Malokostov
TI  - Universal regularizations.
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1990
SP  - 46
EP  - 63
VL  - 84
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1990_84_1_a4/
LA  - ru
ID  - TMF_1990_84_1_a4
ER  - 
%0 Journal Article
%A O. I. Zavialov
%A A. M. Malokostov
%T Universal regularizations.
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1990
%P 46-63
%V 84
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1990_84_1_a4/
%G ru
%F TMF_1990_84_1_a4
O. I. Zavialov; A. M. Malokostov. Universal regularizations.. Teoretičeskaâ i matematičeskaâ fizika, Tome 84 (1990) no. 1, pp. 46-63. http://geodesic.mathdoc.fr/item/TMF_1990_84_1_a4/

[1] Avdeev L. V., Vladimirov A. A., Nucl. Phys., B219 (1983), 262–276 | DOI

[2] Zavialov O. I., Renormalized Quantum Field Theory, Kluwer Academic Publishers, Dordrecht, Holland, 1990 | MR | Zbl

[3] Zavyalov O. I., TMF, 67:3 (1986), 378–395 | MR

[4] Horejsi J., Novotny J., Zavialov O. I., Dimensional Regularization of the VVA Triangle Graph as a Continious Superposition of Pauli–Villars Regularizations, Preprint Universitas Carolina Pragensis NC/TF/1988/3, Prague, 1988 | MR

[5] Horejsi J., Novotny J., Zavialov O. I., Dimensional Regularization in Four Dimensions, Preprint Universitas Carolina Pragensis NC/TF/1988/4, Prague, 1988

[6] Lowenstein J. H., Commun. Math. Phys., 47 (1976), 53–68 | DOI | MR | Zbl

[7] Horejsi J., Zavialov O. I., Axial and Vector Anomalies in a Broad Class of Invariant Regularization and Renormalization Schemes, Preprint Universitas Carolina Pragensis NC/TF/1988/I, Prague, 1988