Invertibility of elements in infinite-dimensional Grassmann–Banach algebras
Teoretičeskaâ i matematičeskaâ fizika, Tome 84 (1990) no. 1, pp. 13-22
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that in an arbitrary infinite-dimensional Grassmann–Banach algebra over a complete normed field $K$ and belonging to the family considered in the author's earlier [1] an element $a$ is invertible if and only if $a(\varnothing)\ne0_K$. An expression is obtained for the inverse element.
@article{TMF_1990_84_1_a1,
author = {V. D. Ivashchuk},
title = {Invertibility of~elements in~infinite-dimensional {Grassmann{\textendash}Banach} algebras},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {13--22},
year = {1990},
volume = {84},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1990_84_1_a1/}
}
V. D. Ivashchuk. Invertibility of elements in infinite-dimensional Grassmann–Banach algebras. Teoretičeskaâ i matematičeskaâ fizika, Tome 84 (1990) no. 1, pp. 13-22. http://geodesic.mathdoc.fr/item/TMF_1990_84_1_a1/
[1] Ivaschuk V. D., TMF, 79:1 (1989), 30–40 | MR
[2] Vladimirov V. S., Volovich I. V., TMF, 59:1 (1984), 3–27 | MR | Zbl
[3] Vladimirov V. S., Volovich I. V., TMF, 60:2 (1984), 169–198 | MR | Zbl
[4] Khrennikov A. Yu., UMN, 43:2 (1988), 87–114 | MR | Zbl
[5] Rogers A., J. Math. Phys., 21:6 (1980), 1352–1365 | DOI | MR | Zbl
[6] Berezin F. A., Vvedenie v algebru i analiz s antikommutiruyuschimi peremennymi, MGU, M., 1983 | MR
[7] Burbaki N., Obschaya topologiya, Nauka, M., 1975 | MR
[8] Burbaki N., Teoriya mnozhestv, Nauka, M., 1965 | MR
[9] Burbaki N., Spektralnaya teoriya, Mir, M., 1972 | MR | Zbl