Branching rules for representations of classical Lie groups
Teoretičeskaâ i matematičeskaâ fizika, Tome 84 (1990) no. 1, pp. 3-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A recursion relation is proved for calculating the multiplicities of the irreducible components in the decomposition of representations of the classical Lie groups. A method of reduction of representations convenient for physical applications is proposed and illustrated by the example of the regular embedding $SU(n)\subset SO(2n)$.
@article{TMF_1990_84_1_a0,
     author = {V. D. Lyakhovsky and I. A. Filanovskii},
     title = {Branching rules for representations of~classical {Lie} groups},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--12},
     year = {1990},
     volume = {84},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1990_84_1_a0/}
}
TY  - JOUR
AU  - V. D. Lyakhovsky
AU  - I. A. Filanovskii
TI  - Branching rules for representations of classical Lie groups
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1990
SP  - 3
EP  - 12
VL  - 84
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1990_84_1_a0/
LA  - ru
ID  - TMF_1990_84_1_a0
ER  - 
%0 Journal Article
%A V. D. Lyakhovsky
%A I. A. Filanovskii
%T Branching rules for representations of classical Lie groups
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1990
%P 3-12
%V 84
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1990_84_1_a0/
%G ru
%F TMF_1990_84_1_a0
V. D. Lyakhovsky; I. A. Filanovskii. Branching rules for representations of classical Lie groups. Teoretičeskaâ i matematičeskaâ fizika, Tome 84 (1990) no. 1, pp. 3-12. http://geodesic.mathdoc.fr/item/TMF_1990_84_1_a0/

[1] Littlewood D. E., The Theory of Group Characters and Matrics Representations of Groups, OUP, Oxford, 1940 | MR

[2] Gelfand I. M., Tseitlin M. L., DAN SSSR, 71:4 (1950), 825–831

[3] Slansky R., Phys. Rep., 79:1 (1981), 1–128 | DOI | MR

[4] Burbaki N., Gruppy i algebry Li, Gl. 4–6, Mir, M., 1972 | MR | Zbl

[5] Moody R. V., Patera J., Characters of Elements of Finite Order in Lie Groups, Preprint CALT 68-1061, CIT, Pasadena, 1983 | MR

[6] King R. C., J. Phys. A, 8:2 (1975), 429–444 | DOI | MR

[7] King R. C., El-Sharkaway N. G. I., J. Phys. A, 16:14 (1983), 3153–3177 | DOI | MR | Zbl

[8] Black G. R. E., King R. C., Wybourne B. G., J. Phys. A, 16:8 (1983), 2405–2421 | DOI | MR | Zbl

[9] Moody R. V., Patera J., Sharp R. T., J. Math. Phys., 24:10 (1983), 2387–2396 | DOI | MR | Zbl

[10] Fischler M., J. Math. Phys., 22:4 (1981), 637–648 | DOI | MR | Zbl

[11] Girardi G., Sciarrino A., Sorba P., Nucl. Phys., B182:2 (1981), 477–504 | DOI | MR

[12] Burbaki N., Gruppy i algebry Li, Gl. 7–8, Mir, M., 1978 | MR

[13] Girardi G., Sciarrino A., Sorba P., J. Phys. A, 15:4 (1982), 1119–1128 | DOI | MR