Branching rules for representations of~classical Lie groups
Teoretičeskaâ i matematičeskaâ fizika, Tome 84 (1990) no. 1, pp. 3-12
Voir la notice de l'article provenant de la source Math-Net.Ru
A recursion relation is proved for calculating the multiplicities of the irreducible components in the decomposition of representations of the classical Lie groups. A method of reduction of representations convenient for physical applications is proposed and illustrated by the example of the regular embedding $SU(n)\subset SO(2n)$.
@article{TMF_1990_84_1_a0,
author = {V. D. Lyakhovsky and I. A. Filanovskii},
title = {Branching rules for representations of~classical {Lie} groups},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--12},
publisher = {mathdoc},
volume = {84},
number = {1},
year = {1990},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1990_84_1_a0/}
}
TY - JOUR AU - V. D. Lyakhovsky AU - I. A. Filanovskii TI - Branching rules for representations of~classical Lie groups JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1990 SP - 3 EP - 12 VL - 84 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1990_84_1_a0/ LA - ru ID - TMF_1990_84_1_a0 ER -
V. D. Lyakhovsky; I. A. Filanovskii. Branching rules for representations of~classical Lie groups. Teoretičeskaâ i matematičeskaâ fizika, Tome 84 (1990) no. 1, pp. 3-12. http://geodesic.mathdoc.fr/item/TMF_1990_84_1_a0/