Hydrogen atom as indicator of hidden symmetry of a ring-shaped potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 83 (1990) no. 3, pp. 419-427 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The idea of an analogy between a ring-shaped potential and a Coulomb potential is advanced. It is shown that the expansion of the parabolic basis with respect to the spherical basis in the problem of a ring-shaped potential is determined by the Clebsch–Gordan coefficients of the group $SU(2)$ continued to the region of arbitrary real indices. The connection between these coefficients and the functions $_3F_2$ is found, and it is shown that they have a symmetry property under substitution of the parabolic quantum numbers.
@article{TMF_1990_83_3_a9,
     author = {I. V. Lutsenko and G. S. Pogosyan and A. N. Sisakyan and V. M. Ter-Antonyan},
     title = {Hydrogen atom as~indicator of~hidden symmetry of~a~ring-shaped potential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {419--427},
     year = {1990},
     volume = {83},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1990_83_3_a9/}
}
TY  - JOUR
AU  - I. V. Lutsenko
AU  - G. S. Pogosyan
AU  - A. N. Sisakyan
AU  - V. M. Ter-Antonyan
TI  - Hydrogen atom as indicator of hidden symmetry of a ring-shaped potential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1990
SP  - 419
EP  - 427
VL  - 83
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1990_83_3_a9/
LA  - ru
ID  - TMF_1990_83_3_a9
ER  - 
%0 Journal Article
%A I. V. Lutsenko
%A G. S. Pogosyan
%A A. N. Sisakyan
%A V. M. Ter-Antonyan
%T Hydrogen atom as indicator of hidden symmetry of a ring-shaped potential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1990
%P 419-427
%V 83
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1990_83_3_a9/
%G ru
%F TMF_1990_83_3_a9
I. V. Lutsenko; G. S. Pogosyan; A. N. Sisakyan; V. M. Ter-Antonyan. Hydrogen atom as indicator of hidden symmetry of a ring-shaped potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 83 (1990) no. 3, pp. 419-427. http://geodesic.mathdoc.fr/item/TMF_1990_83_3_a9/

[1] Kibler M., Winternitz R., J. Phys., A20 (1987), 4097–4108 | MR | Zbl

[2] Gerry C., Phys. Lett., A118 (1986), 445–447 | DOI | MR

[3] Hartmann H., Theor. Chim. Acta, 24 (1972), 201–206 | DOI

[4] Hartmann H., Schuck R., Radtke J., Theor. Chim. Acta, 42 (1976), 1–3 | DOI

[5] Hartmann H., Schuck R., Inter. J. Quantum. Chem., XVIII (1980), 125–141 | DOI

[6] Park D., Zs. of Phys., 159 (1960), 155–157 | DOI | MR

[7] Tarter C. B., J. Math. Phys., 11 (1970), 3192–3195 | DOI | MR

[8] Arutyunyan A. G., Pogosyan G. S., Ter-Antonyan V. M., Izv. AN Arm. SSR. Fizika, 13 (1978), 152–154

[9] Landau L. D., Lifshits E. M., Kvantovaya mekhanika, Nauka, M., 1974 | MR

[10] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, T. I, II, Nauka, M., 1966 | MR

[11] Bete G., Solpiter E., Kvantovaya mekhanika atomov s odnim i dvumya elektronami, Fizmatgiz, M., 1960

[12] Mardoyan L. G., Pogosyan G. S., Sissakian A. N., Ter-Antonyan V. M., J. Phys., A16 (1982), 711–728 | MR

[13] Pogosyan G. S., Ter-Antonyan V. M., TMF, 40 (1979), 140–143 | MR

[14] Varshalovich D. A., Moskalev A. N., Khersonskii V. K., Kvantovaya teoriya uglovogo momenta, Nauka, L., 1975

[15] Bailey W. M., Generalized Hypergeometric Series, Cambridge Tracts, 32, Cambridge, 1935 | MR

[16] Pauli W., Z. Phys., 36 (1926), 336–363 | DOI | Zbl

[17] Kalnins E. G., Miller W. Jr., Winternitz R., SIAM J. Appl. Math., 30 (1976), 630–664 | DOI | MR | Zbl