Quantum mechanics over non-Archimedean number fields
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 83 (1990) no. 3, pp. 406-418
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Schrödinger and Bargmann–Fock representations in non-Archimedean quantum mechanics are realized in the spaces $L_2(K^n,dx)$ and $L_2(Z^n,e^{-zz}\,dz\,d\bar z)$ ($K$ is a non-Archimedean field, and $Z=K(\sqrt\tau\,)$ is its quadratic extension) by means of the calculus of pseudodifferential operators.
			
            
            
            
          
        
      @article{TMF_1990_83_3_a8,
     author = {A. Yu. Khrennikov},
     title = {Quantum mechanics over {non-Archimedean} number fields},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {406--418},
     publisher = {mathdoc},
     volume = {83},
     number = {3},
     year = {1990},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1990_83_3_a8/}
}
                      
                      
                    A. Yu. Khrennikov. Quantum mechanics over non-Archimedean number fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 83 (1990) no. 3, pp. 406-418. http://geodesic.mathdoc.fr/item/TMF_1990_83_3_a8/
