Asymptotic conformal invariance and asymptotic finiteness in grand unification theories in curved spacetime
Teoretičeskaâ i matematičeskaâ fizika, Tome 83 (1990) no. 3, pp. 399-405 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An investigation is made of the behavior of the effective charges $\xi(t)$ that correspond to the parameters of nonminimal coupling of scalars to gravity in “finite” grand unification models in curved spacetime. Examples are given of “finite” theories in which asymptotic conformal invariance is realized in the limit of strong (or weak) gravitational fields. The possibility of asymptotic finiteness in curved spacetime is analyzed.
@article{TMF_1990_83_3_a7,
     author = {F. Sh. Zaripov and S. D. Odyntsov},
     title = {Asymptotic conformal invariance and asymptotic finiteness in~grand unification theories in~curved spacetime},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {399--405},
     year = {1990},
     volume = {83},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1990_83_3_a7/}
}
TY  - JOUR
AU  - F. Sh. Zaripov
AU  - S. D. Odyntsov
TI  - Asymptotic conformal invariance and asymptotic finiteness in grand unification theories in curved spacetime
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1990
SP  - 399
EP  - 405
VL  - 83
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1990_83_3_a7/
LA  - ru
ID  - TMF_1990_83_3_a7
ER  - 
%0 Journal Article
%A F. Sh. Zaripov
%A S. D. Odyntsov
%T Asymptotic conformal invariance and asymptotic finiteness in grand unification theories in curved spacetime
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1990
%P 399-405
%V 83
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1990_83_3_a7/
%G ru
%F TMF_1990_83_3_a7
F. Sh. Zaripov; S. D. Odyntsov. Asymptotic conformal invariance and asymptotic finiteness in grand unification theories in curved spacetime. Teoretičeskaâ i matematičeskaâ fizika, Tome 83 (1990) no. 3, pp. 399-405. http://geodesic.mathdoc.fr/item/TMF_1990_83_3_a7/

[1] Bukhbinder I. L., Odintsov S. D., Likhttsier I. M., TMF, 79:2 (1989), 314–320 | MR

[2] Buchbinder I. L., Odintsov S. D., Shapiro I. L., Riv. Nuovo Cim., 1989 ; Buchbinder I. L., Fortschr. Phys., 34:9 (1986), 605–628 | MR | Zbl | MR

[3] Hamidi S., Schwarz J. H., Phys. Lett., 147B:4–5 (1984), 303–306 ; Leon J. et al., Phys. Lett., 156B:1–2 (1985), 66–72 ; Ermushev A. V., Kazakov D. I., Tarasov O. V., Nucl. Phys., B281 (1987), 72–84 | DOI | MR | DOI

[4] Böhm M., Denner A., Nucl. Phys., B282 (1987), 206–234 | DOI | MR

[5] Odintsov S. D., Shapiro I. L., Pisma v ZhETF, 49 (1989), 125–127

[6] Fradkin E. S., Konshtein S. E., Kr. soobscheniya po fizike No 12, FIAN, 1986, S. 28–29.

[7] Odintsov S. D., Izv. VUZov SSSR. Fizika, 1989, no. 7, 108–109 | MR

[8] Bukhbinder I. L., Odintsov S. D., Izv. VUZov. Fizika, 1983, no. 12, 108–109; ЯФ, 40:5(11) (1984), 1338–1343; Lett. Nuovo Cim., 42 (1985), 379–381 ; Lichtzier I. M., Odintsov S. D., Europhys. Lett., 7:2 (1988), 95–99 | DOI | MR | DOI

[9] Parker L., Toms D. J., Phys. Rev., 29D:8 (1984), 1584–1608

[10] Barvinsky A. O., Vilkovisky G. A., Nucl. Phys., 191B (1981), 237–259 | DOI

[11] Toms D. J., Ann. Phys., 129:2 (1980), 334–357 | DOI | MR

[12] Odintsov S. D., YaF, 51:2 (1990), 547–548 | MR

[13] Fradkin E. S., Tseytlin A. A., Phys. Lett., 134B:3–4 (1984), 187–194 | DOI | MR