Geometric quantization of~strings and reparametrization invariance
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 83 (1990) no. 3, pp. 384-398
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The structure of the phase space of closed bosonic strings in $R^{d-1,1}$ and its geometric quantization are investigated. It is shown that the critical dimension $d=26$ for bosonic strings arises as a condition of integrability of the quantum connection on the fibers of a bundle of complex structures over a loop space. The connection with BRST (Becchi–Rouet–Stora–Tyutin) string quantization is considered.
			
            
            
            
          
        
      @article{TMF_1990_83_3_a6,
     author = {A. D. Popov},
     title = {Geometric quantization of~strings and reparametrization invariance},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {384--398},
     publisher = {mathdoc},
     volume = {83},
     number = {3},
     year = {1990},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1990_83_3_a6/}
}
                      
                      
                    A. D. Popov. Geometric quantization of~strings and reparametrization invariance. Teoretičeskaâ i matematičeskaâ fizika, Tome 83 (1990) no. 3, pp. 384-398. http://geodesic.mathdoc.fr/item/TMF_1990_83_3_a6/
