Asymptotic properties of solutions of a linear-conjugation boundary-value problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 83 (1990) no. 3, pp. 348-357
Cet article a éte moissonné depuis la source Math-Net.Ru
Sufficient conditions are obtained for the existence of solutions of a linear-conjugation boundary-value problem with preassigned asymptotic behavior at infinity. The asymptotic behavior of the solutions of some problems that can be effectively factorized is also investigated.
@article{TMF_1990_83_3_a3,
author = {O. V. Meunargiya},
title = {Asymptotic properties of~solutions of~a~linear-conjugation boundary-value problem},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {348--357},
year = {1990},
volume = {83},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1990_83_3_a3/}
}
O. V. Meunargiya. Asymptotic properties of solutions of a linear-conjugation boundary-value problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 83 (1990) no. 3, pp. 348-357. http://geodesic.mathdoc.fr/item/TMF_1990_83_3_a3/
[1] Volovich I. V., TMF, 57:3 (1983), 469–473 | MR
[2] Meunargiya O. V., Sovremennye problemy matematicheskoi fiziki, Tr. Vsesoyuznogo simpoziuma. T. II (Tbilisi, 1987), TGU, Tbilisi, 1987, 93–100 | MR
[3] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR
[4] Vekua N. P., Sistemy singulyarnykh integralnykh uravnenii, Nauka, M., 1970 | MR | Zbl
[5] Vekua N. P., Meunargiya O. V., Tr. Tbilisskogo matematicheskogo instituta, 88, 1988, 69–74 | MR
[6] Maltsev A. I., Osnovy lineinoi algebry, Nauka, M., 1970 | MR