Vortices, strings, and pseudoinstantons
Teoretičeskaâ i matematičeskaâ fizika, Tome 83 (1990) no. 2, pp. 207-221 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Vortices and strings in four-dimensional space are represented as a closed sector of solutions of the Yang–Mills equations in spaces of signatures $({+}{+}{+}{+})$ and $({+}{+}{-}{-})$. Pseudoinstantons are introduced as solutions of the self-duality equations for the gauge fields in the space of signature $({+}{+}{-}{-})$. Ansatzes that permit reduction of the Yang–Mills equation to the Liouville, sinh-Gordon, and sine-Gordon equations are given.
@article{TMF_1990_83_2_a4,
     author = {A. D. Popov},
     title = {Vortices, strings, and pseudoinstantons},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {207--221},
     year = {1990},
     volume = {83},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1990_83_2_a4/}
}
TY  - JOUR
AU  - A. D. Popov
TI  - Vortices, strings, and pseudoinstantons
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1990
SP  - 207
EP  - 221
VL  - 83
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1990_83_2_a4/
LA  - ru
ID  - TMF_1990_83_2_a4
ER  - 
%0 Journal Article
%A A. D. Popov
%T Vortices, strings, and pseudoinstantons
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1990
%P 207-221
%V 83
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1990_83_2_a4/
%G ru
%F TMF_1990_83_2_a4
A. D. Popov. Vortices, strings, and pseudoinstantons. Teoretičeskaâ i matematičeskaâ fizika, Tome 83 (1990) no. 2, pp. 207-221. http://geodesic.mathdoc.fr/item/TMF_1990_83_2_a4/

[1] Lund F., Regge T., Phys. Rev., D14:6 (1976), 1524–1535 ; Omnes R., Nucl. Phys., B149:2 (1979), 269–284 | MR | Zbl | DOI | MR

[2] Zheltukhin A. A., YaF, 33:6 (1981), 1723–1728 | MR

[3] Zheltukhin A. A., TMF, 52:1 (1982), 73–88 | MR

[4] Zheltukhin A. A., TMF, 56:2 (1983), 230–245 | MR | Zbl

[5] Nesterenko V. B., Lett. Math. Phys., 7 (1983), 287–294 | DOI | MR

[6] Semenov-Tyan-Shanskii M. A., Faddeev L. D., Vestn. LGU, 1977, no. 13, 81–88 | MR

[7] Barbashov B. M., Nesterenko V. V., EChAYa, 15:5 (1984), 1032–1072

[8] Nielsen H. B., Olesen P., Nucl. Phys., B61 (1973), 45–61 | DOI

[9] Taubes C. H., Commun. Math. Phys., 75 (1980), 207–227 | DOI | MR | Zbl

[10] Taubes C. H., Commun. Math. Phys., 72 (1980), 277–292 | DOI | MR | Zbl

[11] Burzlaff J., Scherry T. N., Tchrakian D. H., Nuovo Cim., 87A:4 (1985), 463–478 | DOI | MR

[12] Vladimirov Yu. S., Sistemy otscheta v teorii gravitatsii, Energoatomizdat, M., 1982; Сахаров А. Д., ЖЭТФ, 87:2 (1984), 375–383

[13] Arefeva I. Ya., Volovich I. V., Pisma v ZhETF, 41:12 (1985), 535–537; Арефьева И. Я., Волович И. В., Драгович Б. Г., ТМФ, 70:3 (1987), 422–431 ; Aref'eva I. Ya., Volovich I. V., Phys. Lett., 164B:4–6 (1985), 287–292 ; Arefeva I. Ya., Dragovich B. G., Volovich I. V., Phys. Lett., 177B:3–4 (1986), 357–359 | MR | DOI | MR | DOI | MR

[14] Popov A. D., TMF, 74:2 (1988), 223–229 ; 76:1, 78–87 | MR | MR

[15] Zhelobenko D. P., Shtern A. I., Predstavleniya grupp Li, Nauka, M., 1983 | MR

[16] Prasad M. K., Geometricheskie idei v fizike, Mir, M., 1983, 64–96 | MR

[17] Actor A., Rev. Mod. Phys., 51:3 (1979), 461–525 | DOI | MR

[18] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979 | MR

[19] Dodd R., Eilbek Dzh., Gibbon Dzh., Morris Kh., Solitony i nelineinye volnovye uravneniya, Mir, M., 1988 | MR

[20] Sergeev A. G., Monopoli. Topologicheskie i variatsionnye metody, Mir, M., 1989, 492–555

[21] Hitchin N. J., Proc. Lond. Math. Soc., 55 (1987), 59–126 | DOI | MR | Zbl

[22] Bohr H., Hou B., Saito S., Nuovo Cim., 84A:4 (1984), 237–248 | DOI | MR

[23] Volf Dzh., Prostranstva postoyannoi krivizny, Nauka, M., 1982 | MR

[24] Barbashov B. M., Koshkarov A. L., TMF, 39:1 (1979), 27–34 | MR

[25] Vladimirskii V. V., YaF, 39:2 (1984), 493–495

[26] Iroshnikov G. S., ZhETF, 90:6 (1986), 1922–1930; 92:1 (1987), 28–33 ; 94:6 (1988), 33–37