Nonlinear dynamics and solitons in spin glasses
Teoretičeskaâ i matematičeskaâ fizika, Tome 83 (1990) no. 2, pp. 163-174 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The properties of soliton solutions in a macroscopic model of a spin glass are investigated. A topological classification of the solitons is made. A study is made of the transformation properties and of the stability of two-parameter solitons to which there corresponds a localized precession of the spins with frequency $\omega$ in a frame of reference moving with the soliton with velocity ${\mathbf v}$. The parameters $\omega$ and ${\mathbf v}$ are related naturally to integrals of the motion of the solitons, namely, the number of magnons $N$ and the momentum $\mathbf P$. The stability of one-dimensional dynamical and topological solitons, and also three-dimensional solitons is studied on the basis of the theorems of Lyapunov and Chetaev.
@article{TMF_1990_83_2_a0,
     author = {Yu. A. Beletskii and B. A. Ivanov and A. L. Sukstanskii},
     title = {Nonlinear dynamics and solitons in~spin glasses},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {163--174},
     year = {1990},
     volume = {83},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1990_83_2_a0/}
}
TY  - JOUR
AU  - Yu. A. Beletskii
AU  - B. A. Ivanov
AU  - A. L. Sukstanskii
TI  - Nonlinear dynamics and solitons in spin glasses
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1990
SP  - 163
EP  - 174
VL  - 83
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1990_83_2_a0/
LA  - ru
ID  - TMF_1990_83_2_a0
ER  - 
%0 Journal Article
%A Yu. A. Beletskii
%A B. A. Ivanov
%A A. L. Sukstanskii
%T Nonlinear dynamics and solitons in spin glasses
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1990
%P 163-174
%V 83
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1990_83_2_a0/
%G ru
%F TMF_1990_83_2_a0
Yu. A. Beletskii; B. A. Ivanov; A. L. Sukstanskii. Nonlinear dynamics and solitons in spin glasses. Teoretičeskaâ i matematičeskaâ fizika, Tome 83 (1990) no. 2, pp. 163-174. http://geodesic.mathdoc.fr/item/TMF_1990_83_2_a0/

[1] Andreev A. F., ZhETF, 74:2 (1978), 768–797

[2] Volovik G. B., Dzyaloshinskii I. E., ZhETF, 75:3 (1978), 1102–1109

[3] Volkov D. V., Zheltukhin A. A., FNT, 5:11 (1979), 1359–1363

[4] Borisov A. B., Kiselev V. V., Taluts A. S., FNT, 9:2 (1983), 170–178 | MR

[5] Volkov D. V., EChAYa, 4:1 (1973), 3–41 | MR

[6] Volkov D. V., Zheltukhin A. A., Bliokh Yu. P., FTT, 13:6 (1971), 1668–1678 | MR

[7] Halperin B. I., Saslov W. M., Phys. Rev., B16:5 (1977), 2154–2162 | DOI | MR

[8] Ivanov B. A., Solid State Commun., 34 (1980), 437–439 | DOI

[9] Kosevich A. M., Ivanov B. A., Kovalev A. S., Nelineinye volny namagnichennosti. Dinamicheskie i topologicheskie solitony, Naukova dumka, Kiev, 1983

[10] Baryakhtar I. V., Ivanov B. A., ZhETF, 85:1 (1983), 328–340

[11] Akhiezer I. A., Belozorov D. P., FNT, 10:5 (1984), 544–545

[12] Volovik G. E., Mineev V. P., ZhETF, 72:6 (1977), 2256–2274 | MR

[13] Volovik G. E., Mineev V. P., ZhETF, 73:1 (1977), 767–773

[14] Merkin D. R., Vvedenie v teoriyu ustoichivosti dvizheniya, Nauka, M., 1971 | MR | Zbl

[15] Beletskii Yu. A., Ivanov B. A., Sukstanskii A. L., Solitony v modeli spinovogo stekla. Dinamika, topologiya, ustoichivost, kvaziklassicheskoe kvantovanie, Preprint ITF-87-89R, ITF AN USSR, Kiev, 1987

[16] Makhankov V. G., Phys. Rep. C, 35:1 (1978), 1–128 | DOI | MR