Functional of the grand partition function in the method of collective variables with distinguished reference system. Multicomponent system
Teoretičeskaâ i matematičeskaâ fizika, Tome 83 (1990) no. 1, pp. 72-82 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The method of collective variables with a distinguished reference system is developed to the case of the grand canonical ensemble for multicomponent continuous systems. Thermodynamic relations are used to obtain an explicit form of the functional of the grand partition function that is suitable for describing phase transitions.
@article{TMF_1990_83_1_a8,
     author = {O. V. Patsahan and I. R. Yukhnovskii},
     title = {Functional of~the grand partition function in~the method of~collective variables with distinguished reference system. {Multicomponent} system},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {72--82},
     year = {1990},
     volume = {83},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1990_83_1_a8/}
}
TY  - JOUR
AU  - O. V. Patsahan
AU  - I. R. Yukhnovskii
TI  - Functional of the grand partition function in the method of collective variables with distinguished reference system. Multicomponent system
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1990
SP  - 72
EP  - 82
VL  - 83
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1990_83_1_a8/
LA  - ru
ID  - TMF_1990_83_1_a8
ER  - 
%0 Journal Article
%A O. V. Patsahan
%A I. R. Yukhnovskii
%T Functional of the grand partition function in the method of collective variables with distinguished reference system. Multicomponent system
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1990
%P 72-82
%V 83
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1990_83_1_a8/
%G ru
%F TMF_1990_83_1_a8
O. V. Patsahan; I. R. Yukhnovskii. Functional of the grand partition function in the method of collective variables with distinguished reference system. Multicomponent system. Teoretičeskaâ i matematičeskaâ fizika, Tome 83 (1990) no. 1, pp. 72-82. http://geodesic.mathdoc.fr/item/TMF_1990_83_1_a8/

[1] Yukhnovskii I. R., Golovko M. F., Statisticheskaya teoriya klassicheskikh ravnovesnykh sistem, Naukova dumka, Kiev, 1980 | MR

[2] Yukhnovskii I. R., Fazovye perekhody vtorogo roda. Metod kollektivnykh peremennykh, Naukova dumka, Kiev, 1985 | MR

[3] Yukhnovskii I. R., Funktsional statisticheskoi summy v bolshom kanonicheskom ansamble s vydelennoi sistemoi otscheta, Preprint ITF-88-30R, ITF AN USSR, Kiev, 1988

[4] Yukhnovskii I. R., Idzik I. M., Termodinamicheskii predel vblizi kriticheskoi tochki zhidkost — par, Preprint ITF-85-97R, ITF AN USSR, Kiev, 1985

[5] Hubbard J., Phys. Rev. Lett., 3 (1959), 77–81 | DOI

[6] Khill T., Statisticheskaya mekhanika: Printsipy i izbrannye polozheniya, IIL, M., 1960

[7] Mansoori G. A., Carnahan N. F., Starling K. E., Leland T. W., Jr., J. Chem. Phys., 54:4 (1971), 1523–1525 | DOI

[8] Kirkwood J. G., Buff F. P., J. Chem. Phys., 19:6 (1951), 774–778 | DOI | MR

[9] Patsagan O. V., Yukhnovskii I. R., TMF, 72:3 (1987), 452–461

[10] Yukhnovskii I. R., Patsagan O. V., Svobodnaya energiya dvukhkomponentnykh prostranstvenno-odnorodnykh sistem v okrestnosti kriticheskoi tochki rassloeniya, Preprint ITF-87-8R, ITF AN USSR, Kiev, 1987 | MR