Two-dimensional chiral models with infinite-dimensional symmetry algebras
Teoretičeskaâ i matematičeskaâ fizika, Tome 83 (1990) no. 1, pp. 64-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two-dimensional $G$-invariant chiral models of general form with torsion on Lie groups G are studied. A subclass of models that possess Kac–Moody (KM) symmetry is identified. The corresponding conserved currents are obtained. The geometrical part of the single-loop counterterm, which determines the renormalization of the coupling constants, is calculated. The renormalization-group properties of a class of two-charge models with KM symmetry are considered.
@article{TMF_1990_83_1_a7,
     author = {A. V. Bratchikov},
     title = {Two-dimensional chiral models with infinite-dimensional symmetry algebras},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {64--71},
     year = {1990},
     volume = {83},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1990_83_1_a7/}
}
TY  - JOUR
AU  - A. V. Bratchikov
TI  - Two-dimensional chiral models with infinite-dimensional symmetry algebras
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1990
SP  - 64
EP  - 71
VL  - 83
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1990_83_1_a7/
LA  - ru
ID  - TMF_1990_83_1_a7
ER  - 
%0 Journal Article
%A A. V. Bratchikov
%T Two-dimensional chiral models with infinite-dimensional symmetry algebras
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1990
%P 64-71
%V 83
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1990_83_1_a7/
%G ru
%F TMF_1990_83_1_a7
A. V. Bratchikov. Two-dimensional chiral models with infinite-dimensional symmetry algebras. Teoretičeskaâ i matematičeskaâ fizika, Tome 83 (1990) no. 1, pp. 64-71. http://geodesic.mathdoc.fr/item/TMF_1990_83_1_a7/

[1] Witten E., Commun. Math. Phys., 92 (1984), 455–472 | DOI | MR | Zbl

[2] Kniznik V. G., Zamolodchikov A. B., Nucl. Phys., B247 (1984), 83–103 | DOI

[3] Polyakov A. M., Wiegmann P. B., Phys. Lett., 141B (1984), 223–228 | DOI | MR

[4] Borisov A. B., Kiselev V. V., TMF, 54 (1983), 246–257 | MR

[5] Wiegmann P. B., Phys. Lett., 152B (1985), 209–214 | DOI | MR

[6] Bratchikov A. V., Tyutin I. V., Izv. vuzov. Fizika, 1985, no. 7, 92–95 | MR

[7] Bratchikov A. V., Tyutin I. V., TMF, 66:3 (1986), 360–367 ; 70:3 (1987), 405–411 | MR | MR

[8] Di Vecchia P., Bossi P., Phys. Lett., 140B (1984), 344–348 | DOI

[9] Voronov B. L., Tyutin I. V., YaF, 33 (1981), 1137–1147

[10] Bratchikov A. V., Tyutin I. V., Izv. vuzov. Fizika, 1984, no. 12, 22–25 | MR

[11] Braaten E., Curtright T. L., Zachos C. K., Nucl. Phys., B260 (1985), 630–688 | DOI | MR

[12] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979 | MR

[13] Ecker G., Honerkamp J., Nucl. Phys., B35 (1971), 481–490 | DOI | MR

[14] Tyutin I. V., YaF, 35 (1982), 222–228 | MR