Two-dimensional chiral models with infinite-dimensional symmetry algebras
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 83 (1990) no. 1, pp. 64-71
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Two-dimensional $G$-invariant chiral models of general form with torsion on Lie groups G are studied. A subclass of models that possess Kac–Moody (KM) symmetry is identified. The corresponding conserved currents are obtained. The geometrical part of the single-loop counterterm, which determines the renormalization of the coupling constants, is calculated. The renormalization-group properties of a class of two-charge models with KM symmetry are considered.
			
            
            
            
          
        
      @article{TMF_1990_83_1_a7,
     author = {A. V. Bratchikov},
     title = {Two-dimensional chiral models with infinite-dimensional symmetry algebras},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {64--71},
     publisher = {mathdoc},
     volume = {83},
     number = {1},
     year = {1990},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1990_83_1_a7/}
}
                      
                      
                    A. V. Bratchikov. Two-dimensional chiral models with infinite-dimensional symmetry algebras. Teoretičeskaâ i matematičeskaâ fizika, Tome 83 (1990) no. 1, pp. 64-71. http://geodesic.mathdoc.fr/item/TMF_1990_83_1_a7/
