Matrix Liouville equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 83 (1990) no. 1, pp. 41-50
Cet article a éte moissonné depuis la source Math-Net.Ru
Generalization of Liouville's equation to the case when the unknown function is a matrix is considered. For it, a Bicklund transformation is constructed and used to find several exact solutions. The question of the linear problem for such a matrix equation is discussed.
@article{TMF_1990_83_1_a4,
author = {V. A. Andreev},
title = {Matrix {Liouville} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {41--50},
year = {1990},
volume = {83},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1990_83_1_a4/}
}
V. A. Andreev. Matrix Liouville equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 83 (1990) no. 1, pp. 41-50. http://geodesic.mathdoc.fr/item/TMF_1990_83_1_a4/
[1] Wadati M., J. Phys. Soc. Jap., 38 (1975), 673–681 | DOI | MR
[2] Manakov S. V., ZhETF, 65:2 (1973), 505–513
[3] Kulish P. P., DAN SSSR, 255:2 (1980), 323–326 | MR
[4] Kulish P. P., Sklyanin E. K., Phys. Lett. A, 84A:7 (1981), 349–352 | DOI | MR
[5] Bogolyubov N. M., Budagov A. S., Zap. nauchn. sem. LOMI, 146, 1985, 3–19 | MR
[6] Popowicz Z., Inv. Probl., 3:2 (1987), 329–340 | DOI | MR | Zbl
[7] Andreev V. A., TMF, 75:3 (1988), 340–352 | MR