Poisson brackets for two-dimensional systems that can be integrated by the inverse scattering method
Teoretičeskaâ i matematičeskaâ fizika, Tome 83 (1990) no. 1, pp. 34-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The method of time asymptotics is used to calculate the Poisson brackets of the scattering data for the auxiliary spectral problem associated with the II Davey–Stewartson system of equations; trace identities are obtained. Explicit expressions for action–angle variables are given.
@article{TMF_1990_83_1_a3,
     author = {V. G. Bakurov},
     title = {Poisson brackets for two-dimensional systems that can be~integrated by~the inverse scattering method},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {34--40},
     year = {1990},
     volume = {83},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1990_83_1_a3/}
}
TY  - JOUR
AU  - V. G. Bakurov
TI  - Poisson brackets for two-dimensional systems that can be integrated by the inverse scattering method
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1990
SP  - 34
EP  - 40
VL  - 83
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1990_83_1_a3/
LA  - ru
ID  - TMF_1990_83_1_a3
ER  - 
%0 Journal Article
%A V. G. Bakurov
%T Poisson brackets for two-dimensional systems that can be integrated by the inverse scattering method
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1990
%P 34-40
%V 83
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1990_83_1_a3/
%G ru
%F TMF_1990_83_1_a3
V. G. Bakurov. Poisson brackets for two-dimensional systems that can be integrated by the inverse scattering method. Teoretičeskaâ i matematičeskaâ fizika, Tome 83 (1990) no. 1, pp. 34-40. http://geodesic.mathdoc.fr/item/TMF_1990_83_1_a3/

[1] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR

[2] Zakharov V. E., Manakov S. V., Funkts. analiz i ego prilozh., 19:2 (1985), 11–25 | MR

[3] Fokas A. S., Ablovitz M. J., J. Math. Phys., 25:8 (1984), 2429–2505 | DOI | MR

[4] Zhuhan Jiang, Bullough R. K., Manakov S. V., Physica D, 18:1–3 (1986), 305–307 | MR | Zbl

[5] Lipovskii V. D., Funkts. analiz i ego prilozh., 20:4 (1986), 35–45 | MR | Zbl

[6] Kulish P. P., Lipovsky V. D., Phys. Lett. A, 127:8–9 (1988), 413–417 | DOI | MR

[7] Davey A., Stewartson N., Proc. Roy. Soc. Lond. A, 338 (1974), 101–110 | DOI | MR | Zbl

[8] Nizhnik L. P., Pochinaiko M. D., Preprint IM AN USSR No 85-24, IM AN USSR, Kiev, 1985 | MR

[9] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1976, Gl. 3. | MR

[10] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1976, Gl. 2. | MR | Zbl

[11] Fedoryuk M. V., Metod perevala, Nauka, M., 1977, Gl. 3. | MR