The Lee-Yang property for some isotropic spin models
Teoretičeskaâ i matematičeskaâ fizika, Tome 83 (1990) no. 1, pp. 23-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The concept of a “generalized hierarchical model” is introduced. Such a model is shown to possess the Lee–Yang property for all dimensions of the vector spin. For a chain with nearest-neighbor interaction, the presence of the property is proved for all even dimensions.
@article{TMF_1990_83_1_a2,
     author = {Yu. V. Kozitskii},
     title = {The {Lee-Yang} property for some isotropic spin models},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {23--33},
     year = {1990},
     volume = {83},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1990_83_1_a2/}
}
TY  - JOUR
AU  - Yu. V. Kozitskii
TI  - The Lee-Yang property for some isotropic spin models
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1990
SP  - 23
EP  - 33
VL  - 83
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1990_83_1_a2/
LA  - ru
ID  - TMF_1990_83_1_a2
ER  - 
%0 Journal Article
%A Yu. V. Kozitskii
%T The Lee-Yang property for some isotropic spin models
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1990
%P 23-33
%V 83
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1990_83_1_a2/
%G ru
%F TMF_1990_83_1_a2
Yu. V. Kozitskii. The Lee-Yang property for some isotropic spin models. Teoretičeskaâ i matematičeskaâ fizika, Tome 83 (1990) no. 1, pp. 23-33. http://geodesic.mathdoc.fr/item/TMF_1990_83_1_a2/

[1] Iliev L., Laguerre entire functions, Publishing House of the Bulgarian Academy of Sciences, Sofia, 1987 | MR

[2] Kozitskii Yu. V., Melnik N. O., TMF, 78:2 (1989), 177–186 | MR

[3] Lieb E. H., Sokal A. D., Commun. Math. Phys., 80 (1981), 153–179 | DOI | MR

[4] Dyson F. J., Commun. Math. Phys., 12 (1969), 91–107 | DOI | MR | Zbl

[5] Bleher P. M., Major P., Ann. of Probability, 15 (1987), 431–477 | DOI | MR | Zbl

[6] Kozitskii Yu. V., Yukhnovskii I. R., TMF, 51:2 (1982), 268–277 ; Козицкий Ю. В., ТМФ, 58:1 (1984), 96–108 | MR | MR

[7] Kozitskii Yu. V., Ierarkhicheskaya model vektornogo ferromagnetika v metode kollektivnykh peremennykh. Avtomodelnye raspredeleniya blochnogo spina, Preprint No 86.27, IM AN USSR, Kiev, 1986

[8] Blekher P. M., TMF, 50:3 (1982), 370–382 | MR | Zbl

[9] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. T. 1. Funktsionalnyi analiz, Mir, M., 1977 | MR

[10] Veil G., Klassicheskie gruppy, ikh invarianty i predstavleniya, Mir, M., 1969