De Witt–Schwinger coefficients for projective and Grassmann manifolds
Teoretičeskaâ i matematičeskaâ fizika, Tome 83 (1990) no. 1, pp. 3-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An algebraic method is proposed for constructing harmonic expansions and calculating the De Witt–Schwinger coefficients for homogeneous spaces. Explicit calculations are made for spinor and scalar fields on projective and Grassmann manifolds.
@article{TMF_1990_83_1_a0,
     author = {D. V. Vassilevich and V. D. Lyakhovsky and N. N. Shtykov},
     title = {De~Witt{\textendash}Schwinger coefficients for projective and {Grassmann} manifolds},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--13},
     year = {1990},
     volume = {83},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1990_83_1_a0/}
}
TY  - JOUR
AU  - D. V. Vassilevich
AU  - V. D. Lyakhovsky
AU  - N. N. Shtykov
TI  - De Witt–Schwinger coefficients for projective and Grassmann manifolds
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1990
SP  - 3
EP  - 13
VL  - 83
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1990_83_1_a0/
LA  - ru
ID  - TMF_1990_83_1_a0
ER  - 
%0 Journal Article
%A D. V. Vassilevich
%A V. D. Lyakhovsky
%A N. N. Shtykov
%T De Witt–Schwinger coefficients for projective and Grassmann manifolds
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1990
%P 3-13
%V 83
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1990_83_1_a0/
%G ru
%F TMF_1990_83_1_a0
D. V. Vassilevich; V. D. Lyakhovsky; N. N. Shtykov. De Witt–Schwinger coefficients for projective and Grassmann manifolds. Teoretičeskaâ i matematičeskaâ fizika, Tome 83 (1990) no. 1, pp. 3-13. http://geodesic.mathdoc.fr/item/TMF_1990_83_1_a0/

[1] Appelquist T., Chodos A., Phys. Rev. Lett., 50:3 (1983), 141–144 ; Appelquist T., Chodos A., Myers E., Phys. Lett., 127B:1 (1983), 51–55 ; Воронов Н. А., Коган Я. И., Письма в ЖЭТФ, 38:3 (1983), 262–264; Fradkin E. S., Tseytlin A. A., Nucl. Phys., B227:2 (1983), 252–290 ; Candelas P., Weinberg S., Nucl. Phys., B237:3 (1984), 397–441 | DOI | MR | DOI | MR | DOI | MR | DOI | MR

[2] Kantowski R., Milton K., Phys. Rev., 36:12 (1987), 3712–3721 ; Kikkawa K., Kuboto K., Sawada S., Yamasaki M., Nucl. Phys., B226:4 (1985), 429–444 | MR | DOI | MR

[3] Bukhbinder I. L., Odintsov S. D., YaF, 46:4 (1987), 1233–1239 ; 48:4 (1988), 1155–1164 ; Одинцов С. Д., ЯФ, 46:6 (1987), 1803–1806 | MR | MR | MR

[4] Gleiser M., Jetzer P., Rubin M., Phys. Rev., D36:8 (1987), 2429–2439 ; Birmingham D., Phys. Rev., D36:10 (1987), 3037–3047 ; Василевич Д. В., Штыков Н. Н., ЯФ, 48:4 (1988), 1165–1170 | MR | MR | MR

[5] De Vitt B. S., Dinamicheskaya teoriya grupp i polei, Nauka, M., 1987 ; Barvinsky A. O., Vilkovisky G. O., Phys. Rep., 119:1 (1985), 1–74 | MR | DOI | MR

[6] Salam A., Strathdee J., Ann. Phys., 141:2 (1982), 316–380 | DOI | MR

[7] Vasilevich D. V., Lyakhovskii V. D., Shtykov N. N., Algebraicheskie aspekty modelei Kalutsy–Kleina, Preprint F-34, Izd-vo AN ESSR, Tartu, 1986

[8] Lyakhovskii V. D., Bolokhov A. A., Gruppy simmetrii i elementarnye chastitsy, LGU, L., 1983 | MR

[9] Littlewood D. E., The theory of group characters and matrices representations of groups, Oxf. Univ. Press, Oxford, 1940 | MR

[10] Milnor Dzh., Stashef Dzh., Kharakteristicheskie klassy, Mir, M., 1979 | MR | Zbl

[11] Girardi G., Sciarrino A., Sorba P., Generalized Young Tableaux and Kroneker products of $SO(2n)$ representations, Preprint LAPP-TH-45, Annecy-le-Vieux, 1981 | MR

[12] Burbaki N., Gruppy i algebry Li, Gl. 7, 8, Mir, M., 1978 ; Желобенко Д. П., Штерн А. И., Представления групп Ли, Наука, М., 1983 | MR | MR

[13] Burbaki N., Gruppy i algebry Li, Gl. 4–6, Mir, M., 1972 | MR | Zbl

[14] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971 | MR

[15] Sorokin D. P., Tkach V. I., EChAYa, 18:5 (1987), 1035–1079 ; Арефьева И. Я., Волович И. В., УФН, 146:4 (1985), 655–681 | MR | DOI | MR