Nonequal-time current correlation function in a one-dimensional Bose gas
Teoretičeskaâ i matematičeskaâ fizika, Tome 82 (1990) no. 3, pp. 389-401 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The nonequal-time current correlation function in a one-dimensional Bose gas is calculated in the first order of perturbation theory. It is shown that the form factor of the particle number operator is proportional to a fractional power of the gas volume.
@article{TMF_1990_82_3_a6,
     author = {N. A. Slavnov},
     title = {Nonequal-time current correlation function in~a~one-dimensional {Bose} gas},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {389--401},
     year = {1990},
     volume = {82},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1990_82_3_a6/}
}
TY  - JOUR
AU  - N. A. Slavnov
TI  - Nonequal-time current correlation function in a one-dimensional Bose gas
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1990
SP  - 389
EP  - 401
VL  - 82
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1990_82_3_a6/
LA  - ru
ID  - TMF_1990_82_3_a6
ER  - 
%0 Journal Article
%A N. A. Slavnov
%T Nonequal-time current correlation function in a one-dimensional Bose gas
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1990
%P 389-401
%V 82
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1990_82_3_a6/
%G ru
%F TMF_1990_82_3_a6
N. A. Slavnov. Nonequal-time current correlation function in a one-dimensional Bose gas. Teoretičeskaâ i matematičeskaâ fizika, Tome 82 (1990) no. 3, pp. 389-401. http://geodesic.mathdoc.fr/item/TMF_1990_82_3_a6/

[1] Faddeev L. D., Problemy kvantovoi teorii polya, Tr. V Mezhdunarodnogo soveschaniya po nelokalnym teoriyam polya (Alushta, 1979), OIYaI, Dubna, 1979, 249–299

[2] Takhtadzhyan L. A., Faddeev L. D., UMN, 34:5 (1979), 13–63 | MR

[3] Izergin A. G., Korepin V. E., Commun. Math. Phys., 94 (1985), 67–92 | DOI | MR

[4] Korepin V. E., Commun. Math. Phys., 94 (1984), 63–115 | DOI | MR

[5] Izergin A. G., Korepin V. E., Reshetihin N. Yu., J. Phys. A: Math. Gen., 20 (1987), 4799–4822 | DOI | MR

[6] Bogolyubov N. M., Korepin V. E., TMF, 64:1 (1985), 92–102 | MR

[7] Izergin A. G., Korepin V. E., Commun. Math. Phys., 99 (1985), 271–302 | DOI | MR | Zbl

[8] Izergin A. G., Korepin V. E., Slavnov N. A., TMF, 72:2 (1987), 277–285 | MR

[9] Izergin A. G., Korepin V. E., Pisma v ZhETF, 42:10 (1985), 414–416 | MR

[10] Korepin V. E., Slavnov N. A., TMF, 68:3 (1986), 471–478 | MR

[11] Lieb E. H., Schultz T., Mattis D., Ann. Phys. (N. Y.), 16 (1961), 407–412 | DOI | MR

[12] Yang C. P., Yang C. N., Phys. Rev., 150:1 (1966), 321–339 | DOI

[13] Korepin V. E., Commun. Math. Phys., 86 (1982), 391–418 | DOI | MR | Zbl

[14] Slavnov N. A., TMF, 79:2 (1989), 232–240 | MR