Soliton model of elementary electric charge
Teoretičeskaâ i matematičeskaâ fizika, Tome 82 (1990) no. 3, pp. 349-359 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The existence and topological stability of three-dimensional solitons in the electrodynamics of the Klein-Gordon field is proved. A centrally symmetric solution that is constructed for the field equations can be interpreted as a soliton model of an elementary electric charge with zero spin. It is shown that rotation of the electrostatic soliton leads to acquisition by the charge of an intrinsic magnetic-dipole field.
@article{TMF_1990_82_3_a2,
     author = {A. P. Kobushkin and N. M. Chepilko},
     title = {Soliton model of~elementary electric charge},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {349--359},
     year = {1990},
     volume = {82},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1990_82_3_a2/}
}
TY  - JOUR
AU  - A. P. Kobushkin
AU  - N. M. Chepilko
TI  - Soliton model of elementary electric charge
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1990
SP  - 349
EP  - 359
VL  - 82
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1990_82_3_a2/
LA  - ru
ID  - TMF_1990_82_3_a2
ER  - 
%0 Journal Article
%A A. P. Kobushkin
%A N. M. Chepilko
%T Soliton model of elementary electric charge
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1990
%P 349-359
%V 82
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1990_82_3_a2/
%G ru
%F TMF_1990_82_3_a2
A. P. Kobushkin; N. M. Chepilko. Soliton model of elementary electric charge. Teoretičeskaâ i matematičeskaâ fizika, Tome 82 (1990) no. 3, pp. 349-359. http://geodesic.mathdoc.fr/item/TMF_1990_82_3_a2/

[1] Radzharaman R., Solitony i instantony v kvantovoi teorii polya, Mir, M., 1985

[2] Shyrme T. H. R., Proc. Roy. Soc., A260:1300 (1961), 127–138 ; Adkins G. S., Nappi C. B., Witten E., Nucl. Phys., B228 (1983), 552–566 ; Fujii K., Kobushkin A., Sato K. I., Toyota N., Phys. Rev., D35:6 (1987), 1896–1907 | DOI

[3] Landau L. D., Lifshits E. M., Statisticheskaya fizika, Chast 2, Nauka, M., 1978 | MR

[4] Berestetskii V. B., Lifshits E. M., Pitaevskii L. P., Kvantovaya elektrodinamika, Nauka, M., 1980 | MR

[5] Landau L. D., Lifshits E. M., Teoriya polya, Nauka, M., 1973 | MR

[6] Chepilko N. M., Kiralnaya dinamika vektornogo polya kak model elektromagnetizma, Preprint IF AN USSR, No 88/26, IF AN USSR, Kiev, 1986

[7] Landau L. D., Lifshits E. M., Kvantovaya mekhanika, Nauka, M., 1974 | MR

[8] Mischenko A. S., Sternin B. Yu., Shatalov V. E., Lagranzhevy mnogoobraziya i metod kanonicheskogo operatora, Nauka, M., 1978 | MR

[9] Heslot A., Amer. J. Phys., 51:12 (1983), 1096 | DOI