Correlation functions of the one-dimensional Hubbard model
Teoretičeskaâ i matematičeskaâ fizika, Tome 82 (1990) no. 3, pp. 331-348 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An expression that describes the asymptotic behavior of the time and temperature correlation functions of the one-dimensional Hubbard model is proposed. Conformal field theory is used to calculate the critical exponents that characterize the decrease of the correlation functions at large distances. Their dependence on an external magnetic field and on the population density is studied.
@article{TMF_1990_82_3_a1,
     author = {N. M. Bogolyubov and V. E. Korepin},
     title = {Correlation functions of~the one-dimensional {Hubbard} model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {331--348},
     year = {1990},
     volume = {82},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1990_82_3_a1/}
}
TY  - JOUR
AU  - N. M. Bogolyubov
AU  - V. E. Korepin
TI  - Correlation functions of the one-dimensional Hubbard model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1990
SP  - 331
EP  - 348
VL  - 82
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1990_82_3_a1/
LA  - ru
ID  - TMF_1990_82_3_a1
ER  - 
%0 Journal Article
%A N. M. Bogolyubov
%A V. E. Korepin
%T Correlation functions of the one-dimensional Hubbard model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1990
%P 331-348
%V 82
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1990_82_3_a1/
%G ru
%F TMF_1990_82_3_a1
N. M. Bogolyubov; V. E. Korepin. Correlation functions of the one-dimensional Hubbard model. Teoretičeskaâ i matematičeskaâ fizika, Tome 82 (1990) no. 3, pp. 331-348. http://geodesic.mathdoc.fr/item/TMF_1990_82_3_a1/

[1] Bednorz J. G., Muller K. A., Z. Phys., B64 (1986), 189–193 | DOI

[2] Anderson P. W., Science, 235 (1987), 1196–1198 | DOI

[3] Lieb E. N., Wu F. Y., Phys. Rev. Lett., 20:25 (1968), 1445–1448 | DOI | MR

[4] Takahashi M., Progr. Theor. Phys., 47:1 (1972), 69–82 | DOI

[5] Takahashi M., Progr. Theor. Phys., 42:5 (1969), 1098–1105 | DOI

[6] Ovchinnikov A. A., ZhETF, 57:6(12) (1969), 2137–2143

[7] Sutherland B., Lect. Notes Phys., 242, 1985, 1–95 | DOI | MR

[8] Woynarovich F., J. Phys. C, 16 (1983), 6593–6604 | DOI

[9] Bahder T., Woynarovich F., Phys. Rev. B, 33:4 (1986), 2114–2121 | DOI

[10] Faddeev L. D., Sov. Sci. Rev., Math., Phys., CI (1981), 107–160

[11] Shastry B., Phys. Rev. Lett., 56:23 (1986), 2453–2455 | DOI | MR | Zbl

[12] Korepin V. E., Commun. Math. Phys., 94 (1984), 93–113 | DOI | MR | Zbl

[13] Izergin A. G., Korepin V. E., Pisma v ZhETF, 42:10 (1985), 414–416 | MR

[14] Bogoliubov N. M., Izergin A. G., Korepin V. E., Nucl. Phys., B275, FS17 (1986), 687–705 | DOI | MR

[15] Belavin A. A., Polyakov A. M., Zamolodchikov A. B., Nucl. Phys. B, 241:2 (1984), 333–380 | DOI | MR | Zbl

[16] Bogoliubov N. M., Korepin V. E., J. Mod. Phys. B, 3:3 (1989), 427–439 | DOI | MR

[17] Woynarovich F., Eckle H., J. Phys. A, 20 (1987), L443–L449 | DOI

[18] Bogolyubov N. M., Izergin A. G., Reshetikhin N. Yu., Pisma v ZhETF, 44:9 (1986), 405–407 | MR

[19] Bogoliubov N. M., Izergin A. G., Reshitikhin N. Yu., J. Phys. A, 20 (1987), 5361–5369 | DOI | MR

[20] Woynarovich F., Eckle H.-P., Truong T., Nonanalitic finite-size corrections in the 1-d Bose gas and Heisenberg chain, PACS preprint, West Berlin, 1988 | MR

[21] Firsov Yu. A., Prigodin V. N., Seidel Chr., Phys. Rep., 126:5–6 (1985), 245–371 | DOI

[22] Izergin A. G., Korepin V. E., Reshitikhin N. Yu., Conformal dimensions in Bethe angatz solvable models, Preprint IIP 88-47, N.-Y., 1988 | MR

[23] Blöte H. W., Cardy J. L., Nightingale M. P., Phys. Rev. Lett., 55:7 (1986), 742–745 | DOI

[24] Korepin V. E., DAN SSSR, 265:6 (1982), 1361–1364 | MR

[25] Bogoliubov N. M., Korepin V. E., Mod. Phys. Lett. B, 1:9–10 (1988), 349–352 | DOI

[26] Finkelshtein A. M., Pisma v ZhETF, 25:2 (1977), 83–86 | MR