$\mathrm{Op}^*$ and $\mathrm{C}^*$ dynamical systems.
Teoretičeskaâ i matematičeskaâ fizika, Tome 82 (1990) no. 3, pp. 323-330 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

According to the results of Part I [1], the only nontrivial difference between the vacuum struclures of $\mathrm{Op}^*$ and $\mathrm{C}^*$ dynamical systems is the effect of the infinite vacuum degeneracy in irreducible $\mathrm{Op}^*$ systems. For brevity, this effect is referred to as the “Borchers anomaly”, and is analyzed in detail by means of new mathematical tools – the recently introduced unbounded commutants of $\mathrm{Op}^*$ operators. A simple representation is obtained for the vacuum subspace of any field theory with cyclic vacuum in terms of the unbounded commutant of the field algebra, and from this representation a new necessary and sufficient condition for uniqueness of the vacuum is obtained. Some conditions for absence of the Borchers anomaly are derived, and a comparison which shows how these conditions improve the ones previously known is made.
@article{TMF_1990_82_3_a0,
     author = {A. V. Voronin and S. S. Horuzhy},
     title = {$\mathrm{Op}^*$ and $\mathrm{C}^*$ dynamical systems.},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {323--330},
     year = {1990},
     volume = {82},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1990_82_3_a0/}
}
TY  - JOUR
AU  - A. V. Voronin
AU  - S. S. Horuzhy
TI  - $\mathrm{Op}^*$ and $\mathrm{C}^*$ dynamical systems.
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1990
SP  - 323
EP  - 330
VL  - 82
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1990_82_3_a0/
LA  - ru
ID  - TMF_1990_82_3_a0
ER  - 
%0 Journal Article
%A A. V. Voronin
%A S. S. Horuzhy
%T $\mathrm{Op}^*$ and $\mathrm{C}^*$ dynamical systems.
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1990
%P 323-330
%V 82
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1990_82_3_a0/
%G ru
%F TMF_1990_82_3_a0
A. V. Voronin; S. S. Horuzhy. $\mathrm{Op}^*$ and $\mathrm{C}^*$ dynamical systems.. Teoretičeskaâ i matematičeskaâ fizika, Tome 82 (1990) no. 3, pp. 323-330. http://geodesic.mathdoc.fr/item/TMF_1990_82_3_a0/

[1] Voronin A. V., Khoruzhii S. S., TMF, 82:2 (1990), 163–177 | MR | Zbl

[2] Borchers H. J., Yngvason J., Commun. Math. Phys., 42 (1975), 231–252 | DOI | MR | Zbl

[3] Borchers H. J., Yngvason J., Commun. Math. Phys., 43 (1975), 255–271 | DOI | MR | Zbl

[4] Yngvason J., Rep. Math. Phys., 13:1 (1978), 101–115 | DOI | MR | Zbl

[5] Driessler W., Summers S. J., On the decomposition of relativistic quantum field theories into pure phases, Preprint, Universität Osnabrück, 1985 | MR

[6] Fröhlich J., Ann. Phys., 97 (1976), 1–54 | DOI | MR

[7] Epifanio G., Trapani C., J. Math. Phys., 25:9 (1984), 2633–2637 | DOI | MR | Zbl

[8] Vassilev A. N., Commun. Math. Phys., 13:1 (1969), 81–101 | DOI | MR

[9] Borchers H. J., Commun. Math. Phys., 1:1 (1965), 49–56 | DOI | MR | Zbl

[10] Khoruzhii S. S., Vvedenie v algebraicheskuyu kvantovuyu teoriyu polya, Nauka, M., 1986 | MR

[11] Dixmier J., Les algebres d'operateurs dans l'expace Hilbertien (algebres de von Neumann), 2 ed., Gauthier-Villars, Paris, 1969 | MR

[12] Vasilev A. N., TMF, 1:3 (1969), 305–317 | MR

[13] Powers R. T., Commun. Math. Phys., 21 (1971), 85–124 | DOI | MR | Zbl