Instability criterion for multidimensional nonlinear Hamiltonian systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 82 (1990) no. 2, pp. 268-277 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A differential-geometrical approach is proposed for the investigation of instability in multidimensional nonlinear conservative systems. The critical value $E_c$ of the total energy for onset of instability of the motion in the two-dimensional case is calculated as the smallest value of the potential $U(x,y)$ on the line of zero curvature $K(x,y)=0$ of the potential-energy surface: $E_c=\min U(x,y\mid K=0)$. The criterion is generalized to the multidimensional case and illustrated by definite examples of the Hènon–Heiles systems and the reduced three-dimensional Yang–Mills problem.
@article{TMF_1990_82_2_a9,
     author = {I. V. Krivoshei},
     title = {Instability criterion for multidimensional nonlinear {Hamiltonian} systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {268--277},
     year = {1990},
     volume = {82},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1990_82_2_a9/}
}
TY  - JOUR
AU  - I. V. Krivoshei
TI  - Instability criterion for multidimensional nonlinear Hamiltonian systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1990
SP  - 268
EP  - 277
VL  - 82
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1990_82_2_a9/
LA  - ru
ID  - TMF_1990_82_2_a9
ER  - 
%0 Journal Article
%A I. V. Krivoshei
%T Instability criterion for multidimensional nonlinear Hamiltonian systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1990
%P 268-277
%V 82
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1990_82_2_a9/
%G ru
%F TMF_1990_82_2_a9
I. V. Krivoshei. Instability criterion for multidimensional nonlinear Hamiltonian systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 82 (1990) no. 2, pp. 268-277. http://geodesic.mathdoc.fr/item/TMF_1990_82_2_a9/

[1] Sinai Ya. G., DAN SSSR, 136:3 (1961), 549–551 | MR

[2] Anosov D. V., Tr. Mat. in-ta im. V. A. Steklova, 90, 1967, 210–435 | MR

[3] Sinai Ya. G., UMN, 25:2 (1970), 141–192 | MR | Zbl

[4] Bunimovich L. A., Dinamicheskie sistemy-2, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 2, VINITI, M., 1985, 173–204

[5] Henon M., Heiles C., Astron. J., 68:1 (1963), 1–9

[6] Brumer P., Adv. Chem. Phys., 47:2 (1981), 201–324 | DOI | MR

[7] Tabor M., Adv. Chem. Phys., 46:1 (1981), 73–86 | DOI | MR

[8] Zaslavskii G. M., Chirikov B. V., UFN, 105:1 (1971), 3–47 | DOI

[9] Zaslavskij G. M., Phys. Rep., 80:2 (1981), 257–262 | MR

[10] Krivoshei I. V., Khim. fizika, 4:11 (1985), 1443–1458

[11] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1979 | MR

[12] Likhtenberg A., Liberman M., Regulyarnaya i stokhasticheskaya dinamika, Mir, M., 1984

[13] Krivoshei I. V., Litinskii G. B., Luzanov A. V., Khim. fizika, 4:6 (1985), 759–765

[14] Bolotin Yu. L., Gonchar V. Yu., Krivoshei I. V., Khim. fizika, 5:3 (1986), 309–317 | MR

[15] Matinyan S. G., Savvidi G. K., Ter-Arutyunyan-Savvidi N. G., ZhETF, 80:3 (1981), 830–839 | MR

[16] Toda M., Phys. Lett., 48A:3 (1974), 335–338 | DOI | MR

[17] Brumer P., Duff J. W., J. Chem. Phys., 65:9 (1976), 3566–3578 | DOI

[18] Kozlov V. V., UMN, 38:1 (1983), 3–67 | MR | Zbl

[19] Toda M., Teoriya nelineinykh reshetok, Mir, M., 1984 | MR

[20] Bennetin G., Brambilla R., Galgani L., Physica, 87A:2 (1977), 381–386 | DOI

[21] Lunsford G. H., Ford J., J. Math. Phys., 13:5 (1972), 700–708 | DOI | MR

[22] Poston T., Styuart Ch., Teoriya katastrof i ee prilozheniya, Mir, M., 1980 | MR | Zbl

[23] Gilmor R., Prikladnaya teoriya katastrof, Mir, M., 1984 | MR | Zbl

[24] Martynyuk A. A., Kozhukhovskii N. M., Prikl. mekhanika, 16:12 (1980), 83–85 | MR

[25] Inosemtsev V. I., Phys. Lett., 96A:9 (1983), 447–450 | DOI

[26] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967 | MR

[27] Kurosh A. G., Kurs vysshei algebry, Nauka, M., 1975 | MR | Zbl