Coordinate asymptotics of the wave function for a system of four particles free in the initial state
Teoretičeskaâ i matematičeskaâ fizika, Tome 82 (1990) no. 2, pp. 224-241
Cet article a éte moissonné depuis la source Math-Net.Ru
The coordinate asymptotics of the wave function for a system of four particles in which $4\to4$ processes are taken into account is studied. The main attention is devoted to triple scattering effects. It is established that in the parts of the configuration space in which the formally constructed scattering amplitude becomes infinite, the asymptotic behavior of the wave function can be described by Fresnel type double integrals.
@article{TMF_1990_82_2_a6,
author = {S. L. Yakovlev},
title = {Coordinate asymptotics of~the wave function for a~system of~four particles free in~the initial state},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {224--241},
year = {1990},
volume = {82},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1990_82_2_a6/}
}
TY - JOUR AU - S. L. Yakovlev TI - Coordinate asymptotics of the wave function for a system of four particles free in the initial state JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1990 SP - 224 EP - 241 VL - 82 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_1990_82_2_a6/ LA - ru ID - TMF_1990_82_2_a6 ER -
S. L. Yakovlev. Coordinate asymptotics of the wave function for a system of four particles free in the initial state. Teoretičeskaâ i matematičeskaâ fizika, Tome 82 (1990) no. 2, pp. 224-241. http://geodesic.mathdoc.fr/item/TMF_1990_82_2_a6/
[1] Merkurev S. P., Yakovlev S. L., TMF, 56:1 (1983), 60–73 | MR
[2] Baz A. I., Merkurev S. P., TMF, 31:1 (1977), 48–61
[3] Merkurev S. P., TMF, 8:2 (1971), 235–250 ; Меркурьев С. П., Фаддеев Л. Д., Квантовая теория рассеяния для систем нескольких частиц, Наука, М., 1985 | MR
[4] Nutta J., J. Math. Phys., 12 (1971), 1896–1899 | DOI
[5] Newton R. G., Ann. Phys., 74:2 (1972), 324–351 | DOI | MR
[6] Merkuriev S. P., Yakovlev S. L., Gignoux C., Nucl. Phys., A431 (1984), 125–138 | DOI | MR
[7] Yakubovskii O. A., YaF, 5:6 (1967), 1312–1320
[8] Faddeev L. D., Tr. MIAN SSSR, 69, 1963 | MR | Zbl
[9] Fedoryuk M. V., Metod perevala, Nauka, M., 1977 | MR