Spinning string in four-dimensional spacetime as a model of $SL(2,\mathbb C)$ chiral field with anomaly. I
Teoretičeskaâ i matematičeskaâ fizika, Tome 82 (1990) no. 2, pp. 199-207 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that the model of an open spinning (without Grassmann variables) string in dimension $\mathscr D=1+3$ is equivalent to the model of a chiral field that takes values in the group $SL(2,\mathbb C)$ and has a fixed anomaly. The Poisson structure of the theory is determined by a pair of current algebras with central charge. The action of the model is constructed in terms of the coefficients of the quadratic forms of the world surface of the string. A gauge that generalizes the standard light-cone gauge is used.
@article{TMF_1990_82_2_a3,
     author = {S. V. Talalov},
     title = {Spinning string in~four-dimensional spacetime as~a~model of~$SL(2,\mathbb C)$ chiral field with {anomaly.~I}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {199--207},
     year = {1990},
     volume = {82},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1990_82_2_a3/}
}
TY  - JOUR
AU  - S. V. Talalov
TI  - Spinning string in four-dimensional spacetime as a model of $SL(2,\mathbb C)$ chiral field with anomaly. I
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1990
SP  - 199
EP  - 207
VL  - 82
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1990_82_2_a3/
LA  - ru
ID  - TMF_1990_82_2_a3
ER  - 
%0 Journal Article
%A S. V. Talalov
%T Spinning string in four-dimensional spacetime as a model of $SL(2,\mathbb C)$ chiral field with anomaly. I
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1990
%P 199-207
%V 82
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1990_82_2_a3/
%G ru
%F TMF_1990_82_2_a3
S. V. Talalov. Spinning string in four-dimensional spacetime as a model of $SL(2,\mathbb C)$ chiral field with anomaly. I. Teoretičeskaâ i matematičeskaâ fizika, Tome 82 (1990) no. 2, pp. 199-207. http://geodesic.mathdoc.fr/item/TMF_1990_82_2_a3/

[1] Takhtadzhyan L. A., Faddeev L. D., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl

[2] Reiman A. G., Semenov-Tyan-Shanskii M. A., DAN SSSR, 251:6 (1980), 1310–1314 | MR

[3] Dolan L., Phys. Rep., 109:1 (1984), 1–94 | DOI | MR

[4] Frenkel I. B., Kac V. G., Inv. Math., 62 (1980), 23–66 | DOI | MR | Zbl

[5] Witten E., Commun. Math. Phys., 92 (1984), 455–472 | DOI | MR | Zbl

[6] Novikov S. P., DAN SSSR, 260:1 (1981), 31–35 | MR | Zbl

[7] Talalov S. V., TMF, 79:1 (1989), 41–48 | MR

[8] Zhelnorovich V. A., Tenzornye predstavleniya spinorov i spinornykh uravnenii, MGU, M., 1979

[9] Talalov S. V., TMF, 71:3 (1987), 357–369 | MR | Zbl

[10] Barbashov B. I., Nesterenko V. V., Model relyativistskoi struny v fizike adronov, Energoatomizdat, M., 1987

[11] Barut A., Ronchka R., Teoriya predstavlenii grupp i ee prilozheniya, T. 1, Mir, M., 1980 | MR | Zbl

[12] Pogrebkov A. K., Talalov S. V., TMF, 70:3 (1987), 342–350 | MR

[13] Wakimoto M., Commun. Math. Phys., 104 (1986), 605–609 | DOI | MR | Zbl

[14] Lepowsky J., Wilson R., Commun. Math. Phys., 62 (1978), 43–53 | DOI | MR | Zbl

[15] Jorjadze G. P., Pogrebkov A. K., Polivanov M. C., J. Phys. A, 19 (1986), 121–139 | DOI | MR | Zbl

[16] Penrouz R., Uord R. S., “Tvistory v ploskom i iskrivlennom prostranstve-vremeni”, Tvistory i kalibrovochnye polya, Mir, M., 1983