$\mathrm{Op}^*$ and $\mathrm C^*$ dynamical systems~I.
Teoretičeskaâ i matematičeskaâ fizika, Tome 82 (1990) no. 2, pp. 163-177

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of an $\mathrm{Op}^*$ dynamical system is introduced and provides the basis of a systematic study of the problem of describing the vacuum structure of quantum field theory, formulated as a problem of the decomposition of operators and states for an algebra of unbounded operators ($\mathrm{Op}^*$ algebra) with a group of automorphisms. The following result makes it possible to develop a new solution of this problem, namely, it is found (Theorem 1) that for $\mathrm{Op}^*$ algebras Araki's theorem, which states that the commutant of a quasilocal $\mathrm C^*$ algebra with cyclic vacuum is Abelian, is true and can be very easily proved. Introducing the concept of an orthogonal measure on an $\mathrm{Op}^*$ algebra, and generalizing Tomita's theorem on orthogonal measures on $\mathrm C^*$ algebras, we obtain for $\mathrm{Op}^*$ algebras a connection between the spatial decomposition and the decomposition of states. The key Theorem 5 solves the decomposition problem for $\mathrm{Op}^*$ dynamical systems and completely reveals their structural similarity with the wellstudied $\mathrm C^*$ dynamical systems. The physical consequences of this solution are analyzed, and also the properties of Lorentz invariance of an $\mathrm{Op}^*$ system.
@article{TMF_1990_82_2_a0,
     author = {A. V. Voronin and S. S. Horuzhy},
     title = {$\mathrm{Op}^*$ and $\mathrm C^*$ dynamical {systems~I.}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {163--177},
     publisher = {mathdoc},
     volume = {82},
     number = {2},
     year = {1990},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1990_82_2_a0/}
}
TY  - JOUR
AU  - A. V. Voronin
AU  - S. S. Horuzhy
TI  - $\mathrm{Op}^*$ and $\mathrm C^*$ dynamical systems~I.
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1990
SP  - 163
EP  - 177
VL  - 82
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1990_82_2_a0/
LA  - ru
ID  - TMF_1990_82_2_a0
ER  - 
%0 Journal Article
%A A. V. Voronin
%A S. S. Horuzhy
%T $\mathrm{Op}^*$ and $\mathrm C^*$ dynamical systems~I.
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1990
%P 163-177
%V 82
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1990_82_2_a0/
%G ru
%F TMF_1990_82_2_a0
A. V. Voronin; S. S. Horuzhy. $\mathrm{Op}^*$ and $\mathrm C^*$ dynamical systems~I.. Teoretičeskaâ i matematičeskaâ fizika, Tome 82 (1990) no. 2, pp. 163-177. http://geodesic.mathdoc.fr/item/TMF_1990_82_2_a0/