$\mathrm{Op}^*$ and $\mathrm C^*$ dynamical systems I.
Teoretičeskaâ i matematičeskaâ fizika, Tome 82 (1990) no. 2, pp. 163-177 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The concept of an $\mathrm{Op}^*$ dynamical system is introduced and provides the basis of a systematic study of the problem of describing the vacuum structure of quantum field theory, formulated as a problem of the decomposition of operators and states for an algebra of unbounded operators ($\mathrm{Op}^*$ algebra) with a group of automorphisms. The following result makes it possible to develop a new solution of this problem, namely, it is found (Theorem 1) that for $\mathrm{Op}^*$ algebras Araki's theorem, which states that the commutant of a quasilocal $\mathrm C^*$ algebra with cyclic vacuum is Abelian, is true and can be very easily proved. Introducing the concept of an orthogonal measure on an $\mathrm{Op}^*$ algebra, and generalizing Tomita's theorem on orthogonal measures on $\mathrm C^*$ algebras, we obtain for $\mathrm{Op}^*$ algebras a connection between the spatial decomposition and the decomposition of states. The key Theorem 5 solves the decomposition problem for $\mathrm{Op}^*$ dynamical systems and completely reveals their structural similarity with the wellstudied $\mathrm C^*$ dynamical systems. The physical consequences of this solution are analyzed, and also the properties of Lorentz invariance of an $\mathrm{Op}^*$ system.
@article{TMF_1990_82_2_a0,
     author = {A. V. Voronin and S. S. Horuzhy},
     title = {$\mathrm{Op}^*$ and $\mathrm C^*$ dynamical {systems~I.}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {163--177},
     year = {1990},
     volume = {82},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1990_82_2_a0/}
}
TY  - JOUR
AU  - A. V. Voronin
AU  - S. S. Horuzhy
TI  - $\mathrm{Op}^*$ and $\mathrm C^*$ dynamical systems I.
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1990
SP  - 163
EP  - 177
VL  - 82
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1990_82_2_a0/
LA  - ru
ID  - TMF_1990_82_2_a0
ER  - 
%0 Journal Article
%A A. V. Voronin
%A S. S. Horuzhy
%T $\mathrm{Op}^*$ and $\mathrm C^*$ dynamical systems I.
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1990
%P 163-177
%V 82
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1990_82_2_a0/
%G ru
%F TMF_1990_82_2_a0
A. V. Voronin; S. S. Horuzhy. $\mathrm{Op}^*$ and $\mathrm C^*$ dynamical systems I.. Teoretičeskaâ i matematičeskaâ fizika, Tome 82 (1990) no. 2, pp. 163-177. http://geodesic.mathdoc.fr/item/TMF_1990_82_2_a0/

[1] Borchers H. J., Commun. Math. Phys., 1:1 (1965), 49–56 | DOI | MR | Zbl

[2] Khoruzhii S. S., Vvedenie v algebraicheskuyu kvantovuyu teoriyu polya, Nauka, M., 1986 | MR

[3] Epifanio G., Trapani C., J. Math. Phys., 25:9 (1984), 2633–2637 | DOI | MR | Zbl

[4] Driessler W., Summers S. J., On the decomposition of relativistic quantum field theories into pure phases, Preprint, Universität Osnabrück, 1985 | MR

[5] Borchers H. J., Yngvason J., Commun. Math. Phys., 42:3 (1975), 231–252 | DOI | MR | Zbl

[6] Borchers H. J., Yngvason J., Commun. Math. Phys., 43:3 (1975), 255–271 | DOI | MR | Zbl

[7] Yngvason J., Rep. Math. Phys., 13:1 (1978), 101–115 | DOI | MR | Zbl

[8] Bratteli U., Robinson D., Operatornye algebry i kvantovaya statisticheskaya mekhanika, Mir, M., 1982 | MR | Zbl

[9] Voronin A. V., Sushko V. N., Khoruzhii S. S., TMF, 59:1 (1984), 28–48 | MR | Zbl

[10] Gelfand I. M., Vilenkin N. Ya., Obobschennye funktsii. T. 4. Nekotorye primeneniya garmonicheskogo analiza. Osnaschennye gilbertovy prostranstva, Fizmatgiz, M., 1961 | MR

[11] Borchers H. J., Nuovo Cim., 24:2 (1962), 214–236 | DOI | MR | Zbl

[12] Driessler W., Summers S. J., Ann. Inst. H. Poincaré, A43:2 (1985), 147–166 | MR | Zbl

[13] Dixmier J., Les algebres d'operateurs dans l'expace Hilbertien (algebres de von Neumann), 2ed., Gauthier-Villars, Paris, 1969 | MR

[14] Doplicher S., Haag R., Roberts J. S., Commun. Math. Phys., 13:1 (1969), 1–23 | DOI | MR | Zbl

[15] Fröhlich J., “Quantum theory of nonlinear wave (field) equations or superselection sectors in constructive quantum field theory”, Lecture notes in physics, 73, Springer-Verlag, Berlin–Heidelberg–New York, 1978, 339–413 | DOI | MR

[16] Powers R. T., Commun. Math. Phys., 21 (1971), 85–124 | DOI | MR | Zbl