Effective action and superconformal anomalies of $(p, p)$ $\sigma$ models in $(1, 1)$ superspace
Teoretičeskaâ i matematičeskaâ fizika, Tome 82 (1990) no. 1, pp. 75-82 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A description of $(p,p)$-extended locally supersymmetric $\sigma$ models is given in terms of $(1,1)$ superfields. It is shown that to models with extended supersymmetry there correspond two types of scalar superfields (ordinary and twisted). The effective action of the $(p,p)$ $\sigma$ models is constructed, and conditions under which the theory is free of superconformal anomalies are found.
@article{TMF_1990_82_1_a8,
     author = {I. L. Buchbinder and S. M. Kuzenko and O. A. Solov'ev},
     title = {Effective action and superconformal anomalies of~$(p, p)$~$\sigma$~models in~$(1, 1)$~superspace},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {75--82},
     year = {1990},
     volume = {82},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1990_82_1_a8/}
}
TY  - JOUR
AU  - I. L. Buchbinder
AU  - S. M. Kuzenko
AU  - O. A. Solov'ev
TI  - Effective action and superconformal anomalies of $(p, p)$ $\sigma$ models in $(1, 1)$ superspace
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1990
SP  - 75
EP  - 82
VL  - 82
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1990_82_1_a8/
LA  - ru
ID  - TMF_1990_82_1_a8
ER  - 
%0 Journal Article
%A I. L. Buchbinder
%A S. M. Kuzenko
%A O. A. Solov'ev
%T Effective action and superconformal anomalies of $(p, p)$ $\sigma$ models in $(1, 1)$ superspace
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1990
%P 75-82
%V 82
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1990_82_1_a8/
%G ru
%F TMF_1990_82_1_a8
I. L. Buchbinder; S. M. Kuzenko; O. A. Solov'ev. Effective action and superconformal anomalies of $(p, p)$ $\sigma$ models in $(1, 1)$ superspace. Teoretičeskaâ i matematičeskaâ fizika, Tome 82 (1990) no. 1, pp. 75-82. http://geodesic.mathdoc.fr/item/TMF_1990_82_1_a8/

[1] Hull C. M., Witten E., Phys. Lett., 160B:3 (1985), 398–405 | DOI | MR

[2] Gross D. J., Harvey J. A., Martinec E., Rohm R., Nucl. Phys., B256:2 (1985), 253–262 ; B267:3 (1986), 75–87 | DOI | DOI

[3] Dixon L., Harvey J. A., Vafa C., Witten E., Nucl. Phys., B274:2 (1985), 286–297

[4] Brooks R., Muhammad F., Gates S. J., Extended $D=2$ supergravity theories and their low superspace realizations, Preprint CTP-1486, Cambridge, 1987 | MR

[5] Gates S. J., Grisaru M. T., Mezincescu L., Townsend P. K., Nucl. Phys., B286:1 (1987), 1–26 | DOI | MR

[6] Gates S. J., Karlhede A., Lindström U., Roček M., Nucl. Phys., B243:2 (1984), 221–230 | DOI | MR

[7] Howe P. S., J. Phys. A.: Math. Gen., 12:3 (1979), 393–402 | DOI | MR

[8] Gates S. J., Nishino H., Class. Quantum Grav., 3:3 (1986), 391–399 | DOI | MR | Zbl

[9] Gates S. J., Hull C. M., Roček M., Nucl. Phys., B248:1 (1984), 157–186 | DOI | MR

[10] Roček M., Van Nieuwenhuizen P., Zhang S. C., Ann. Phys. (N. Y.), 172:2 (1986), 348–370 | DOI | MR | Zbl

[11] Brooks R., Gates S. J., Nucl. Phys., B287:4 (1987), 669–686 | DOI | MR

[12] Polyakov A. M., Phys. Lett., 103B:3 (1981), 211–213 | DOI | MR

[13] Fradkin E. S., Tseytlin A. A., Phys. Lett., 106B:1–2 (1981), 63–68 ; 162B:4–6 (1985), 295–298 | DOI | MR | DOI | MR | Zbl

[14] Bukhbinder I. L., Kuzenko S. M., Solovev O. A., YaF, 49:5 (1989), 1466–1476 | MR