Mean-field models in the theory of random media. II
Teoretičeskaâ i matematičeskaâ fizika, Tome 82 (1990) no. 1, pp. 143-154 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of a stationary random medium described by the evolution equation $\partial\psi/\partial t=\varkappa\overline\Delta_V+\xi(\mathbf x)\psi$ where $\overline\Delta_V$ is the operator of mean-field diffusion in the volume $V\subset\mathbf Z^d$, $\xi(\mathbf x),\mathbf x\in V$, are independent random variables with normal distribution $\mathbf N(0,\sigma^2)$. A study is made of the asymptotic behavior of the solution $\psi(\mathbf x,t)$ and its statistical moments $m_p(\mathbf x,t)=\langle\psi^p(\mathbf x,t)\rangle$, $p=1,2,\dots$, as $t\to\infty$, $|V|\to\infty$. The paper continues the earlier [1].
@article{TMF_1990_82_1_a14,
     author = {L. V. Bogachev and S. A. Molchanov},
     title = {Mean-field models in~the theory of~random {media.~II}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {143--154},
     year = {1990},
     volume = {82},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1990_82_1_a14/}
}
TY  - JOUR
AU  - L. V. Bogachev
AU  - S. A. Molchanov
TI  - Mean-field models in the theory of random media. II
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1990
SP  - 143
EP  - 154
VL  - 82
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1990_82_1_a14/
LA  - ru
ID  - TMF_1990_82_1_a14
ER  - 
%0 Journal Article
%A L. V. Bogachev
%A S. A. Molchanov
%T Mean-field models in the theory of random media. II
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1990
%P 143-154
%V 82
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1990_82_1_a14/
%G ru
%F TMF_1990_82_1_a14
L. V. Bogachev; S. A. Molchanov. Mean-field models in the theory of random media. II. Teoretičeskaâ i matematičeskaâ fizika, Tome 82 (1990) no. 1, pp. 143-154. http://geodesic.mathdoc.fr/item/TMF_1990_82_1_a14/

[1] Bogachev L. V., Molchanov S. A., TMF, 81:2 (1989), 281–290 | MR

[2] Galambosh Ya. I., Asimptoticheskaya teoriya ekstremalnykh poryadkovykh statistik, Nauka, M., 1984 | MR

[3] Kiefer J., “Iterated logarithm analogues for sample quantiles when $p_n\downarrow 0$”, Proc. Sixth Berkeley Symp. Math. Stat. Prob., V. 1, Univ. Calif. Press, Berkeley–Los Angeles, 1972, 227–244 | MR | Zbl

[4] Shorack G. R., Wellner J. A., Ann. Probab., 6:2 (1978), 349–353 | DOI | MR | Zbl

[5] Zeldovich Ya. B., Molchanov S. A., Ruzmaikin A. A., Sokolov D. D., ZhETF, 89:6(12) (1985), 2061–2072

[6] Ito K., Makkin G., Diffuzionnye protsessy i ikh traektorii, Mir, M., 1968 | Zbl

[7] Feller V., Vvedenie v teoriyu veroyatnostei i ee primeneniya, T. 2, Mir, M., 1984 | MR

[8] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971 | MR