Bound states in a noncentral potential:
Teoretičeskaâ i matematičeskaâ fizika, Tome 82 (1990) no. 1, pp. 90-100 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new approach to the problem of the critical coupling constant $\lambda_c$ (critical binding) is proposed. The case of noncentral potentials is investigated. The critical coupling constant for the ground state is calculated by means of the $\varepsilon$ expansion ($\varepsilon=(d-2)/2$, where $d$ is the dimension of space), and the corrections to the semiclassical asymptotic behavior of the number of bound states are found.
@article{TMF_1990_82_1_a10,
     author = {A. A. Belov and Yu. E. Lozovik},
     title = {Bound states in~a~noncentral potential:},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {90--100},
     year = {1990},
     volume = {82},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1990_82_1_a10/}
}
TY  - JOUR
AU  - A. A. Belov
AU  - Yu. E. Lozovik
TI  - Bound states in a noncentral potential:
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1990
SP  - 90
EP  - 100
VL  - 82
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1990_82_1_a10/
LA  - ru
ID  - TMF_1990_82_1_a10
ER  - 
%0 Journal Article
%A A. A. Belov
%A Yu. E. Lozovik
%T Bound states in a noncentral potential:
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1990
%P 90-100
%V 82
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1990_82_1_a10/
%G ru
%F TMF_1990_82_1_a10
A. A. Belov; Yu. E. Lozovik. Bound states in a noncentral potential:. Teoretičeskaâ i matematičeskaâ fizika, Tome 82 (1990) no. 1, pp. 90-100. http://geodesic.mathdoc.fr/item/TMF_1990_82_1_a10/

[1] Kalodzhero F., Metod fazovykh funktsii v teorii potentsialnogo rasseyaniyam, Mir, M., 1972, Gl. 23.

[2] Baz A. I., Zeldovich Ya. B., Perelomov A. M., Rasseyanie, reaktsii i raspady v nerelyativistskoi kvantovoi mekhanike, Nauka, M., 1971, Gl. 1. | Zbl

[3] Apenko S. M., Pisma v ZhETF, 38:3 (1983), 132–135 | MR

[4] Landau L. D., Lifshits E. M., Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1974 | MR

[5] De Vitt B. S., Obschaya teoriya otnositelnosti, eds. Khoking S., Izrael V., Mir, M., 1983, Gl. VI. | MR

[6] Polyakov A. M., Phys. Lett., 59B:1 (1975), 79–82 | DOI | MR