The Toda chain: Solutions with dynamical symmetry and classical orthogonal polynomials
Teoretičeskaâ i matematičeskaâ fizika, Tome 82 (1990) no. 1, pp. 11-17
Cet article a éte moissonné depuis la source Math-Net.Ru
Solutions of the Toda chain for which the operators of the Lax pair form a Lie algebra with three generators are found. The corresponding eigenvalue problem generates the classical orthogonal polynomials of Kravchuk, Meixner, Pollaczek, Laguerre, Charlier, and Hermite.
@article{TMF_1990_82_1_a1,
author = {A. S. Zhedanov},
title = {The {Toda} chain: {Solutions} with dynamical symmetry and classical orthogonal polynomials},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {11--17},
year = {1990},
volume = {82},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1990_82_1_a1/}
}
A. S. Zhedanov. The Toda chain: Solutions with dynamical symmetry and classical orthogonal polynomials. Teoretičeskaâ i matematičeskaâ fizika, Tome 82 (1990) no. 1, pp. 11-17. http://geodesic.mathdoc.fr/item/TMF_1990_82_1_a1/
[1] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR
[2] Toda M., Teoriya nelineinykh reshetok, Mir, M., 1984 | MR
[3] Malkin I. A., Manko V. I., Dinamicheskie simmetrii i kogerentnye sostoyaniya kvantovykh sistem, Nauka, M., 1979 | MR
[4] Perelomov A. M., Obobschennye kogerentnye sostoyaniya i ikh primeneniya, Nauka, M., 1987 | MR
[5] Nikiforov A. F., Suslov S. K., Uvarov V. B., Klassicheskie ortogonalnye polinomy diskretnoi peremennoi, Nauka, M., 1985 | MR
[6] Granovskii Ya. I., Zhedanov A. S., Izv. vuzov. Fizika, 1986, no. 5, 60–66 | MR
[7] Miller U., Simmetriya i razdelenie peremennykh, Mir, M., 1981 | MR