The Toda chain: Solutions with dynamical symmetry and classical orthogonal polynomials
Teoretičeskaâ i matematičeskaâ fizika, Tome 82 (1990) no. 1, pp. 11-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Solutions of the Toda chain for which the operators of the Lax pair form a Lie algebra with three generators are found. The corresponding eigenvalue problem generates the classical orthogonal polynomials of Kravchuk, Meixner, Pollaczek, Laguerre, Charlier, and Hermite.
@article{TMF_1990_82_1_a1,
     author = {A. S. Zhedanov},
     title = {The {Toda} chain: {Solutions} with dynamical symmetry and classical orthogonal polynomials},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {11--17},
     year = {1990},
     volume = {82},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1990_82_1_a1/}
}
TY  - JOUR
AU  - A. S. Zhedanov
TI  - The Toda chain: Solutions with dynamical symmetry and classical orthogonal polynomials
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1990
SP  - 11
EP  - 17
VL  - 82
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1990_82_1_a1/
LA  - ru
ID  - TMF_1990_82_1_a1
ER  - 
%0 Journal Article
%A A. S. Zhedanov
%T The Toda chain: Solutions with dynamical symmetry and classical orthogonal polynomials
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1990
%P 11-17
%V 82
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1990_82_1_a1/
%G ru
%F TMF_1990_82_1_a1
A. S. Zhedanov. The Toda chain: Solutions with dynamical symmetry and classical orthogonal polynomials. Teoretičeskaâ i matematičeskaâ fizika, Tome 82 (1990) no. 1, pp. 11-17. http://geodesic.mathdoc.fr/item/TMF_1990_82_1_a1/

[1] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR

[2] Toda M., Teoriya nelineinykh reshetok, Mir, M., 1984 | MR

[3] Malkin I. A., Manko V. I., Dinamicheskie simmetrii i kogerentnye sostoyaniya kvantovykh sistem, Nauka, M., 1979 | MR

[4] Perelomov A. M., Obobschennye kogerentnye sostoyaniya i ikh primeneniya, Nauka, M., 1987 | MR

[5] Nikiforov A. F., Suslov S. K., Uvarov V. B., Klassicheskie ortogonalnye polinomy diskretnoi peremennoi, Nauka, M., 1985 | MR

[6] Granovskii Ya. I., Zhedanov A. S., Izv. vuzov. Fizika, 1986, no. 5, 60–66 | MR

[7] Miller U., Simmetriya i razdelenie peremennykh, Mir, M., 1981 | MR