Thermodynamic functions of a two-component spatially homogeneous system near the critical separation point
Teoretičeskaâ i matematičeskaâ fizika, Tome 81 (1989) no. 3, pp. 455-467 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the vicinity of critical separation point the evident expression for free energy of double component isotropic system as the function of composition, temperature and Hamiltonian initial parameters is received. With $T\geqslant T_c$ the investigated system represents homogeneous mixture. With $T\leqslant T_c$ the sphere of free energy instability according to concentration is determined in which the component stratification takes place. The expressions for entropy and specific heat are also given.
@article{TMF_1989_81_3_a9,
     author = {O. V. Patsahan and I. R. Yukhnovskii},
     title = {Thermodynamic functions of~a~two-component spatially homogeneous system near the critical separation point},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {455--467},
     year = {1989},
     volume = {81},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1989_81_3_a9/}
}
TY  - JOUR
AU  - O. V. Patsahan
AU  - I. R. Yukhnovskii
TI  - Thermodynamic functions of a two-component spatially homogeneous system near the critical separation point
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1989
SP  - 455
EP  - 467
VL  - 81
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1989_81_3_a9/
LA  - ru
ID  - TMF_1989_81_3_a9
ER  - 
%0 Journal Article
%A O. V. Patsahan
%A I. R. Yukhnovskii
%T Thermodynamic functions of a two-component spatially homogeneous system near the critical separation point
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1989
%P 455-467
%V 81
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1989_81_3_a9/
%G ru
%F TMF_1989_81_3_a9
O. V. Patsahan; I. R. Yukhnovskii. Thermodynamic functions of a two-component spatially homogeneous system near the critical separation point. Teoretičeskaâ i matematičeskaâ fizika, Tome 81 (1989) no. 3, pp. 455-467. http://geodesic.mathdoc.fr/item/TMF_1989_81_3_a9/

[1] Yukhnovskii I. R., Golovko M. F., Statisticheskaya teoriya klassicheskikh ravnovesnykh sistem, Naukova dumka, Kiev, 1980 | MR

[2] Patsagan O. V., Yukhnovskii I. R., TMF, 72:3 (1987), 452–461

[3] Yukhnovskii I. R., Patsagan O. V., Bazisnaya plotnost mery dlya yavleniya rassloeniya v dvukhkomponentnoi sisteme, Preprint ITF-86-153R, ITF AN USSR, Kiev, 1986

[4] Yukhnovskii I. R., Fazovye perekhody vtorogo roda. Metod kollektivnykh peremennykh, Naukova dumka, Kiev, 1985 | MR

[5] Mansoori G. A., Carnahan N. F., Starling K. E., Leland T. W., Jr., J. Chem. Phys., 54:4 (1971), 1523–1525 | DOI

[6] Van Konynenburg P. H., Scott R. L., Philos. Trans. Roy. Soc. London, 298A:1442 (1980), 495–540

[7] Pittion-Rossillon G., J. Chem. Phys., 73:7 (1980), 3398–3403 | DOI

[8] Takao Ichimura, Akira Ueda, J. Chem. Phys., 74:6 (1981), 3566–3576 | DOI