The Green–Schwarz superstring as an asymmetric model of a chiral field
Teoretičeskaâ i matematičeskaâ fizika, Tome 81 (1989) no. 3, pp. 420-433 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new class of two-dimensional $\sigma$-models of the Wess–Zumino type is constructed. The target manifold of these models is coset space $G\otimes G/G^-$ where supergroup $G$ is obtained by contraction from an arbitrary semi-simple Lie supergroup and $G^-$ is some abelian subgroup of translations in $G\otimes G$. It is shown that the equations of motion following from the Wess–Zumino type action of these model admit a zero-curvature representation.
@article{TMF_1989_81_3_a6,
     author = {E. A. Ivanov and A. P. Isaev},
     title = {The {Green{\textendash}Schwarz} superstring as~an~asymmetric model of~a~chiral field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {420--433},
     year = {1989},
     volume = {81},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1989_81_3_a6/}
}
TY  - JOUR
AU  - E. A. Ivanov
AU  - A. P. Isaev
TI  - The Green–Schwarz superstring as an asymmetric model of a chiral field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1989
SP  - 420
EP  - 433
VL  - 81
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1989_81_3_a6/
LA  - ru
ID  - TMF_1989_81_3_a6
ER  - 
%0 Journal Article
%A E. A. Ivanov
%A A. P. Isaev
%T The Green–Schwarz superstring as an asymmetric model of a chiral field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1989
%P 420-433
%V 81
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1989_81_3_a6/
%G ru
%F TMF_1989_81_3_a6
E. A. Ivanov; A. P. Isaev. The Green–Schwarz superstring as an asymmetric model of a chiral field. Teoretičeskaâ i matematičeskaâ fizika, Tome 81 (1989) no. 3, pp. 420-433. http://geodesic.mathdoc.fr/item/TMF_1989_81_3_a6/

[1] Novikov S. P., DAN SSSR, 260:1 (1981), 31–35 ; УМН, 37:5 (1982), 3–49 ; Wess J., Zumino B., Phys. Lett., 37B (1971), 95–97 | MR | Zbl | MR | Zbl | DOI | MR

[2] Witten E., Commun. Math. Phys., 92 (1984), 455–472 | DOI | MR | Zbl

[3] Knizhnik V. G., Zamolodchikov A. B., Nucl. Phys., 247:1 (1984), 83–103 | DOI | MR | Zbl

[4] Belavin A. A., Polyakov A. M., Zamolodchikov A. B., Nucl. Phys., B241 (1984), 333–380 | DOI | MR | Zbl

[5] Nemeschansky D., Yankielowicz S., Phys. Rev. Lett., 54 (1985), 620–623 ; Gepner D., Witten E., Nucl. Phys., B278 (1986), 493 ; Bergschoeff E., Randjbar-Daemi S., Salam A. et al., Nucl. Phys., B269 (1986), 77–96 ; Исаев А. П., ТМФ, 71:3 (1987), 395–409 | DOI | MR | DOI | MR | DOI | MR

[6] Henneaux M., Mezincescu L., Phys. Lett., 152B (1985), 340–342 | DOI | MR

[7] Green M. B., Schwarz J. H., Phys. Lett., 136B (1984), 367–370 | DOI

[8] Gross D., Harvey J., Martinec E., Rohm R., Nucl. Phys., B256 (1985), 253–284 ; Curtright T. L. et al., Phys. Lett., 161B (1985), 79–84 ; Milewski B., Class. Quant. Grav., 4 (1987), 509–528 | DOI | MR | DOI | MR | DOI | MR

[9] Ivanov E. A., TMF, 71:2 (1987), 193–207 | MR

[10] Cherednik I. V., TMF, 47:2 (1981), 225–229 | MR

[11] Siegel W., Phys. Lett., 128B (1983), 397–399 | DOI

[12] Kallosh R., Pisma v ZhETF, 45:8 (1987), 365–367 ; Nissimov E., Pacheva S., Solomon S., Nucl. Phys., B297 (1988), 349–373 ; Hori T., Kamimura K., Progr. Theor. Phys., 73:2 (1985), 476–495 | MR | DOI | MR | DOI | MR | Zbl

[13] Braaten E., Curtright T., Zachos C., Nucl. Phys., B260 (1985), 630–688 ; Krichever I. et al., Nucl. Phys., B264 (1986), 415–422 | DOI | MR | DOI | MR

[14] Semenov-Tyan-Shanskii M. A., Faddeev L. D., Vestn. LGU, 1977, no. 13, 81–88 | MR

[15] Galperin A., Ivanov E., Kalitzin S., Ogievetsky V., Sokatchev E., Class. Quant. Grav., 1 (1984), 469–498 | DOI | MR

[16] Zakharov V. E., Mikhailov A. V., ZhETF, 74:6 (1978), 1953–1973 | MR