Small clusters: Dynamical symmetry and $1/d$ expansion
Teoretičeskaâ i matematičeskaâ fizika, Tome 81 (1989) no. 3, pp. 405-419 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Asymptotic expansion on the parameter $1/d$, where $d$ is space dimension, is built for the spectrum of critical binding constants of three and four particle clusters. Trajectories of bound states in the “energy – binding constant” plane are investigated. Asymptotical dynamical symmetry of the problem is found and applied to the reduction of the problem to dynamics on (semi) simple Lie algebra.
@article{TMF_1989_81_3_a5,
     author = {A. A. Belov and Yu. E. Lozovik},
     title = {Small clusters: {Dynamical} symmetry and $1/d$ expansion},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {405--419},
     year = {1989},
     volume = {81},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1989_81_3_a5/}
}
TY  - JOUR
AU  - A. A. Belov
AU  - Yu. E. Lozovik
TI  - Small clusters: Dynamical symmetry and $1/d$ expansion
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1989
SP  - 405
EP  - 419
VL  - 81
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1989_81_3_a5/
LA  - ru
ID  - TMF_1989_81_3_a5
ER  - 
%0 Journal Article
%A A. A. Belov
%A Yu. E. Lozovik
%T Small clusters: Dynamical symmetry and $1/d$ expansion
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1989
%P 405-419
%V 81
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1989_81_3_a5/
%G ru
%F TMF_1989_81_3_a5
A. A. Belov; Yu. E. Lozovik. Small clusters: Dynamical symmetry and $1/d$ expansion. Teoretičeskaâ i matematičeskaâ fizika, Tome 81 (1989) no. 3, pp. 405-419. http://geodesic.mathdoc.fr/item/TMF_1989_81_3_a5/

[1] Van Jeursen A. P. J., Reuss J., J. Chem. Phys., 63:10 (1975), 4559–4560 | DOI

[2] Stephens P. W., King J. G., Bull. Am. Phys. Soc., 23:1 (1978), 240–243

[3] Huber H. S., Lim T. K., J. Chem. Phys., 68:3 (1978), 1006–1012 | DOI | MR

[4] Tjon J. A., Phys. Lett., 56B:3 (1975), 217–220 | DOI | MR

[5] Lim T. K., Mol. Phys., 33:2 (1977), 373–376 | DOI

[6] Bruch L. W., Tjon J. A., Phys. Rev., 19A:2 (1979), 425–432 | DOI

[7] Tjon J. A., Phys. Rev., 21A:4 (1980), 1334–1340 | DOI

[8] Bruch L. W., McGee I. J., J. Chem. Phys., 59:1 (1973), 409–413 | DOI

[9] Bruch L. W., Phys. Rev., 13B:7 (1976), 2873–2875 | DOI

[10] Lekner J., Mol. Phys., 23:3 (1972), 619–625 | DOI

[11] Calogero F., Simonov Yu. A., Phys. Rev., 183:4 (1969), 869–872 | DOI | MR

[12] Efimov V. N., Phys. Lett., 33B:8 (1970), 563–564 | DOI

[13] Efimov V. N., YaF, 12:5 (1970), 1080–1090

[14] Minlos R. A., Faddeev L. D., ZhETF, 41:6(12) (1961), 1851–1852

[15] Amado R. D., Noble J. V., Phys. Rev., 5D:8 (1972), 1992–2002

[16] Simonov Yu. A., Grach I. L., Shmatikov M. Zh., Nucl. Phys., 334A:1 (1980), 80–92 | DOI | MR

[17] Chatterjee A., J. Phys., 18A (1985), 2403–2408 | MR

[18] Chatterjee A., J. Phys., 19A (1986), 3707–3710 | MR

[19] Dutt R., Mukkerji U., Varshni Y. P., Phys. Rev., 34A:2 (1986), 777–784 | DOI

[20] Moreno G., Zepeda A., J. Phys. B, 17:1 (1984), 21–27 | DOI

[21] Sukhatme U., Imbo T., Phys. Rev., 28D:2 (1983), 418–420 | MR

[22] Imbo T., Pagnamenta A., Sukhatme U., Phys. Rev., 29D:8 (1984), 1669–1681

[23] Imbo T., Sukhatme U., Phys. Rev., 31D:10 (1985), 2655–2658 | MR

[24] Imbo T., Pagnamenta A., Sukhatme U., Phys. Lett., 105A:4–5 (1984), 183–187 | DOI

[25] Imbo T., Sukhatme U., Phys. Rev. Lett., 54:20 (1985), 2184–2187 | DOI

[26] Migdal A. A., Phys. Rep., 102:4 (1983), 199–290 | DOI

[27] Ma Sh., Sovremennaya teoriya kriticheskikh yavlenii, Mir, M., 1980

[28] Mlodinow L. D., Papanicolaou N., Ann. Phys., 128:2 (1980), 314–334 | DOI | MR

[29] Jevicki A., Papanicolaou N., Nucl. Phys., 171B:3 (1980), 362–376 | DOI | MR

[30] Papanicolaou N., Ann. Phys., 136:1 (1981), 210–225 | DOI | MR

[31] Mlodinow L. D., Papanicolaou N., Ann. Phys., 131:1 (1980), 1–35 | DOI | MR

[32] Lozovik Yu. E., Klyuchnik A. V., Nersesyan O. N., Phys. Lett., 108A:8 (1985), 395–396 | DOI