Combinatorics of the $R$ operation
Teoretičeskaâ i matematičeskaâ fizika, Tome 81 (1989) no. 3, pp. 336-353
Cet article a éte moissonné depuis la source Math-Net.Ru
By using the functional language the new proof is given for the fundamental combinatorial statement in the renormalization theory [1], i. e. the application of $R$-operation to the diagrams of the initial theory is equivalent to the addition to the initial interaction $V(\varphi)$ the counterterms $\Delta V(\varphi)=-LH(\varphi)$, where $L$ defines $R=R(L)$ counter term operation on the diagrams such that the counter term $L\gamma$ corresponds with the graph $\gamma$, and $H(\varphi)$ is the $S$-matrix functional represented by the diagrams. (In the quantum field theory the operator of $S$-matrix is given by $T\exp V(\hat\varphi)=NH(\hat\varphi)$, where $T$ is a Wick chronological product, $N$ is a normal product, $\hat\varphi$ is a free field operator, $V(\hat\varphi) = iS_\mathrm{int}(\hat\varphi)$ is an interaction quantum operator.) The statement is proved for any $V$ and for an arbitrary operation $L$. The composite operators and the Wilson expansion are also considered.
@article{TMF_1989_81_3_a1,
author = {A. N. Vasil'ev},
title = {Combinatorics of~the $R$ operation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {336--353},
year = {1989},
volume = {81},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1989_81_3_a1/}
}
A. N. Vasil'ev. Combinatorics of the $R$ operation. Teoretičeskaâ i matematičeskaâ fizika, Tome 81 (1989) no. 3, pp. 336-353. http://geodesic.mathdoc.fr/item/TMF_1989_81_3_a1/
[1] Zavyalov O. I., Perenormirovannye diagrammy Feinmana, Nauka, M., 1979 | MR
[2] Bogolyubov N. N., Shirkov D. V., Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1976 | MR
[3] Khepp K., Teoriya perenormirovok, Nauka, M., 1974 | MR
[4] Kollinz Dzh., Perenormirovka, Mir, M., 1988 | MR
[5] Smirnov V. A., Chetyrkin K. G., TMF, 64:3 (1985), 370–374 | MR
[6] Patashinskii A. Z., Pokrovskii V. L., Fluktuatsionnaya teoriya fazovykh perekhodov, Nauka, M., 1982 ; Ма Ш., Современная теория критических явлений, Мир, М., 1980 | MR
[7] Vasilev A. N., Funktsionalnye metody v kvantovoi teorii polya i statistike, LGU, L., 1976
[8] Vladimirov A. A., TMF, 36:2 (1978), 271–278 | MR