Metric isomorphism of~a~classical ideal gas and a~local perturbation of~it
Teoretičeskaâ i matematičeskaâ fizika, Tome 81 (1989) no. 3, pp. 323-335
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the ergodic properties of the infinite-particles gas with local interaction defined in any finite number of nonintersecting bounded open convex domains $\Lambda_1, \Lambda_2,\dots,\Lambda_N$. To describe the pair interaction of particles ${\mathbf x}_i$ and ${\mathbf x}_j$ situated in some domain $\Lambda_m$ we use the spherical-symmetric potential $\Phi(|{\mathbf x}_i-{\mathbf x}_j|)$ which is repulsive when $|{\mathbf x}_i-{\mathbf x}_j|$ is small and attractive when $|{\mathbf x}_i-{\mathbf x}_j|$ is large. The main result of the paper is the theorem of the metric isomorphism of the classical ideal gas and its local perturbation.
@article{TMF_1989_81_3_a0,
author = {Yu. A. Terletskii},
title = {Metric isomorphism of~a~classical ideal gas and a~local perturbation of~it},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {323--335},
publisher = {mathdoc},
volume = {81},
number = {3},
year = {1989},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1989_81_3_a0/}
}
TY - JOUR AU - Yu. A. Terletskii TI - Metric isomorphism of~a~classical ideal gas and a~local perturbation of~it JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1989 SP - 323 EP - 335 VL - 81 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1989_81_3_a0/ LA - ru ID - TMF_1989_81_3_a0 ER -
Yu. A. Terletskii. Metric isomorphism of~a~classical ideal gas and a~local perturbation of~it. Teoretičeskaâ i matematičeskaâ fizika, Tome 81 (1989) no. 3, pp. 323-335. http://geodesic.mathdoc.fr/item/TMF_1989_81_3_a0/