Metric isomorphism of~a~classical ideal gas and a~local perturbation of~it
Teoretičeskaâ i matematičeskaâ fizika, Tome 81 (1989) no. 3, pp. 323-335

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the ergodic properties of the infinite-particles gas with local interaction defined in any finite number of nonintersecting bounded open convex domains $\Lambda_1, \Lambda_2,\dots,\Lambda_N$. To describe the pair interaction of particles ${\mathbf x}_i$ and ${\mathbf x}_j$ situated in some domain $\Lambda_m$ we use the spherical-symmetric potential $\Phi(|{\mathbf x}_i-{\mathbf x}_j|)$ which is repulsive when $|{\mathbf x}_i-{\mathbf x}_j|$ is small and attractive when $|{\mathbf x}_i-{\mathbf x}_j|$ is large. The main result of the paper is the theorem of the metric isomorphism of the classical ideal gas and its local perturbation.
@article{TMF_1989_81_3_a0,
     author = {Yu. A. Terletskii},
     title = {Metric isomorphism of~a~classical ideal gas and a~local perturbation of~it},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {323--335},
     publisher = {mathdoc},
     volume = {81},
     number = {3},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1989_81_3_a0/}
}
TY  - JOUR
AU  - Yu. A. Terletskii
TI  - Metric isomorphism of~a~classical ideal gas and a~local perturbation of~it
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1989
SP  - 323
EP  - 335
VL  - 81
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1989_81_3_a0/
LA  - ru
ID  - TMF_1989_81_3_a0
ER  - 
%0 Journal Article
%A Yu. A. Terletskii
%T Metric isomorphism of~a~classical ideal gas and a~local perturbation of~it
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1989
%P 323-335
%V 81
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1989_81_3_a0/
%G ru
%F TMF_1989_81_3_a0
Yu. A. Terletskii. Metric isomorphism of~a~classical ideal gas and a~local perturbation of~it. Teoretičeskaâ i matematičeskaâ fizika, Tome 81 (1989) no. 3, pp. 323-335. http://geodesic.mathdoc.fr/item/TMF_1989_81_3_a0/