Self-consistent form of the random phase approximation
Teoretičeskaâ i matematičeskaâ fizika, Tome 81 (1989) no. 2, pp. 291-300
Cet article a éte moissonné depuis la source Math-Net.Ru
A method of approximate calculation of statistical sum is suggested which is based on the representation of the latter in the form of the path integral and improving the random phase approximation. Essential in the improving is the using of the Finberg method for the evaluation of the Green functions in external field. In contrast to the usual random phase approximation the scheme presented is self-consistent. The method is illustrated by the example of the transition into superconducting state. The equation formulating the self-consistency condition is investigated. It is shown that values of the critical indices coincide with those for the ideal Bose gas and the spherical model.
@article{TMF_1989_81_2_a13,
author = {T. N. Antsygina and V. A. Slyusarev and A. V. Svidzinskii},
title = {Self-consistent form of~the random phase approximation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {291--300},
year = {1989},
volume = {81},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1989_81_2_a13/}
}
TY - JOUR AU - T. N. Antsygina AU - V. A. Slyusarev AU - A. V. Svidzinskii TI - Self-consistent form of the random phase approximation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1989 SP - 291 EP - 300 VL - 81 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_1989_81_2_a13/ LA - ru ID - TMF_1989_81_2_a13 ER -
T. N. Antsygina; V. A. Slyusarev; A. V. Svidzinskii. Self-consistent form of the random phase approximation. Teoretičeskaâ i matematičeskaâ fizika, Tome 81 (1989) no. 2, pp. 291-300. http://geodesic.mathdoc.fr/item/TMF_1989_81_2_a13/
[1] Mors F. M., Feshbakh G., Metody teoreticheskoi fiziki, T. II, Mir, M., 1960, S. 15–22.
[2] Svidzinskii A. V., Prostranstvenno-neodnorodnye zadachi teorii sverkhprovodimosti, Nauka, M., 1982 | MR
[3] Bogolyubov N. N., Zubarev D. N., Tserkovnikov Yu. A., DAN SSSR, 117:5 (1957), 788–791
[4] Stenli G., Fazovye perekhody i kriticheskie yavleniya, Mir, M., 1973
[5] Tyablikov S. V., Metody kvantovoi teorii magnetizma, Nauka, M., 1975 | MR