Self-consistent form of~the random phase approximation
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 81 (1989) no. 2, pp. 291-300
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A method of approximate calculation of statistical sum is suggested which is based on the representation of the latter in the form of the path integral and improving the random phase approximation. Essential in the improving is the using of the Finberg method for the evaluation of the Green functions in external field. In contrast to the usual random phase approximation the scheme presented is self-consistent. The method is illustrated by the example of the transition into superconducting state. The equation formulating the self-consistency condition is investigated. It is shown that values of the critical indices coincide with those for the ideal Bose gas and the spherical model.
			
            
            
            
          
        
      @article{TMF_1989_81_2_a13,
     author = {T. N. Antsygina and V. A. Slyusarev and A. V. Svidzinskii},
     title = {Self-consistent form of~the random phase approximation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {291--300},
     publisher = {mathdoc},
     volume = {81},
     number = {2},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1989_81_2_a13/}
}
                      
                      
                    TY - JOUR AU - T. N. Antsygina AU - V. A. Slyusarev AU - A. V. Svidzinskii TI - Self-consistent form of~the random phase approximation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1989 SP - 291 EP - 300 VL - 81 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1989_81_2_a13/ LA - ru ID - TMF_1989_81_2_a13 ER -
T. N. Antsygina; V. A. Slyusarev; A. V. Svidzinskii. Self-consistent form of~the random phase approximation. Teoretičeskaâ i matematičeskaâ fizika, Tome 81 (1989) no. 2, pp. 291-300. http://geodesic.mathdoc.fr/item/TMF_1989_81_2_a13/
