Mean-field models in the theory of random media. I
Teoretičeskaâ i matematičeskaâ fizika, Tome 81 (1989) no. 2, pp. 281-290 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is the first in the series of works treating the problems of the theory of random media on the basis of the mean field (nonlocal) diffusion approximation with the corresponding operator $\overline\Delta_V$, $V\subset\mathbf Z^d$. The general introduction to the whole cycle is presented including a brief survey of problems in the theory of random media. The localization problem for the operator $H_V=\overline\Delta_V+\xi(x)$ is also considered, where $\{\xi(x)\}$ are i. i. d. continious random variables, $|V|\to\infty$. It is proved that the localization in the average (uniformly in $V$) takes place.
@article{TMF_1989_81_2_a12,
     author = {L. V. Bogachev and S. A. Molchanov},
     title = {Mean-field models in~the theory of~random {media.~I}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {281--290},
     year = {1989},
     volume = {81},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1989_81_2_a12/}
}
TY  - JOUR
AU  - L. V. Bogachev
AU  - S. A. Molchanov
TI  - Mean-field models in the theory of random media. I
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1989
SP  - 281
EP  - 290
VL  - 81
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1989_81_2_a12/
LA  - ru
ID  - TMF_1989_81_2_a12
ER  - 
%0 Journal Article
%A L. V. Bogachev
%A S. A. Molchanov
%T Mean-field models in the theory of random media. I
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1989
%P 281-290
%V 81
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1989_81_2_a12/
%G ru
%F TMF_1989_81_2_a12
L. V. Bogachev; S. A. Molchanov. Mean-field models in the theory of random media. I. Teoretičeskaâ i matematičeskaâ fizika, Tome 81 (1989) no. 2, pp. 281-290. http://geodesic.mathdoc.fr/item/TMF_1989_81_2_a12/

[1] Anderson P. W., Phys. Rev., 109:5 (1958), 1492–1503 | DOI

[2] Simon B., Souillard B., J. Stat. Phys., 36:1–2 (1984), 273–288 | DOI

[3] Carmona R., Acta Appl. Math., 4:1 (1985), 65–91 | DOI | MR | Zbl

[4] Pastur L. A., “Spektralnaya teoriya sluchainykh samosopryazhennykh operatorov”, Itogi nauki i tekhniki. Teoriya veroyatn. Matem. statistika. Teor. kibernetika, 25, VINITI, M., 1987, 3–67

[5] Zeldovich Ya. B., Molchanov S. A., Ruzmaikin A. A., Sokolov D. D., ZhETF, 89:6(12) (1985), 2061–2072

[6] Zeldovich Ya. B., Molchanov S. A., Ruzmaikin A. A., Sokoloff D. D., “Generating, diffusion, intermittency of random fields”, Sov. Sci. Rev. Math. Phys., 7, Gordon and Breach, London, 1987, 1–120 | MR

[7] Zeldovich Ya. B., Molchanov S. A., Ruzmaikin A. A., Sokolov D. D., UFN, 152:1 (1987), 3–32 | DOI

[8] Molchanov S. A., Ruzmaikin A. A., Sokolov D. D., UFN, 145:4 (1985), 593–628 | DOI

[9] Molchanov S. A., Idei teorii sluchainykh sred, Dep. v VINITI 04.01.88, No 914-V88, M., 1988

[10] Stratonovich R. L., Uslovnye markovskie protsessy, MGU, M., 1966

[11] Matskyavichus V. K., Litov. mat. sb., 22:3 (1982), 128–134 | MR

[12] Lifshits I. M., ZhETF, 55:6(12) (1968), 2408–2422

[13] Lifshits I. M., Grosberg A. Yu., Khokhlov A. R., UFN, 127:3 (1979), 353–389 | DOI | MR

[14] Kats M., “Matematicheskie mekhanizmy fazovykh perekhodov”, Ustoichivost i fazovye perekhody, Mir, M., 1973, 164–244 | MR

[15] Lifshits I. M., Gredeskul S. A., Pastur L. A., Vvedenie v teoriyu neuporyadochennykh sistem, Nauka, M., 1982 | MR

[16] Sinai Ya. G., Teoriya fazovykh perekhodov. Strogie rezultaty, Nauka, M., 1980 | MR

[17] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 2, Mir, M., 1984 | MR

[18] Bogachev L. V., O yavlenii lokalizatsii dlya posledovatelnostei sluchainykh diskretnykh mer, Dep. v VINITI 13.06.88. No 4652-V88, M., 1988