Hamiltonian dynamics of finite-gap configurations of relativistic strings
Teoretičeskaâ i matematičeskaâ fizika, Tome 81 (1989) no. 1, pp. 94-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Classical dynamics of the Nambu–Goto string is investigated by means of the auxiliary spectral problem method. Lorentz invariant spectral data are derived and the action–angle variables are constructed using these data. The Poisson bracket for the components of vectors determining string configurations on finite-gap orbits is calculated and the expression for the bracket is brought to an explicitely covariant form. Geometrical interpretation of the topological charge of the string is suggested.
@article{TMF_1989_81_1_a8,
     author = {E. B. Berdnikov and G. P. Pron'ko},
     title = {Hamiltonian dynamics of~finite-gap configurations of~relativistic strings},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {94--106},
     year = {1989},
     volume = {81},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1989_81_1_a8/}
}
TY  - JOUR
AU  - E. B. Berdnikov
AU  - G. P. Pron'ko
TI  - Hamiltonian dynamics of finite-gap configurations of relativistic strings
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1989
SP  - 94
EP  - 106
VL  - 81
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1989_81_1_a8/
LA  - ru
ID  - TMF_1989_81_1_a8
ER  - 
%0 Journal Article
%A E. B. Berdnikov
%A G. P. Pron'ko
%T Hamiltonian dynamics of finite-gap configurations of relativistic strings
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1989
%P 94-106
%V 81
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1989_81_1_a8/
%G ru
%F TMF_1989_81_1_a8
E. B. Berdnikov; G. P. Pron'ko. Hamiltonian dynamics of finite-gap configurations of relativistic strings. Teoretičeskaâ i matematičeskaâ fizika, Tome 81 (1989) no. 1, pp. 94-106. http://geodesic.mathdoc.fr/item/TMF_1989_81_1_a8/

[1] Pronko G. P., Teoriya relyativistskoi struny. I: Vspomogatelnaya spektralnaya zadacha, Preprint IFVE 85-27, IFVE, Serpukhov, 1985

[2] Pronko G. P., Teoriya relyativistskoi struny. II: Peremennaya deistvie–ugol, Preprint IFVE 85-28, IFVE, Serpukhov, 1985

[3] Pronko G. P., Teoriya relyativistskoi struny. III: Vozmuschenie odnozonnykh konfiguratsii, Preprint IFVE 85-152, IFVE, Serpukhov, 1985

[4] Zakharov V. E., Faddeev L. D., Funkts. analiz i ego prilozh., 5:4 (1971), 18–27 | MR | Zbl

[5] Dubrovin B. A., Matveev V. B., Novikov S. P., UMN, 31:1 (1976), 55–136 | MR | Zbl

[6] Its A. R., Vestn. LGU, 7:2 (1976), 39–46 | MR | Zbl

[7] Dirak P. A. M., Lektsii po kvantovoi mekhanike, Mir, M., 1968

[8] Pronko G. P., Razumov A. V., TMF, 56:2 (1983), 192–205 | MR | Zbl

[9] Ablovits M., Sigur Kh., Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR

[10] Pronko G. P., TMF, 57:2 (1983), 203–216 | MR

[11] Dubrovin B. A., UMN, 36:2 (1981), 11–80 | MR | Zbl

[12] Veselov A. P., Novikov S. P., DAN SSSR, 266:3 (1982), 533–537 | MR

[13] Dubrovin B. A., Novikov S. P., DAN SSSR, 267:6 (1982), 1295–1300 | MR | Zbl

[14] Pronko G. P., TMF, 59:2 (1984), 240–248 | MR