Pointwise vanishing of two-loop contributions to the one, two, three-point functions in the Neveu–Schwarz–Ramond formalism
Teoretičeskaâ i matematičeskaâ fizika, Tome 81 (1989) no. 1, pp. 24-35 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Point-wise vanishing of contributions into one-, two- and three-point functions on the moduli space in the superstring theory is demonstrated, provided the both odd moduli are located at one of the ramifications points. Analysis of the generalised Riemann identities essential for constructing the Neveu–Schwarz–Ramond formalism on hyperelliptic surfaces is performed.
@article{TMF_1989_81_1_a2,
     author = {A. Yu. Morozov},
     title = {Pointwise vanishing of~two-loop contributions to~the one, two, three-point functions in~the {Neveu{\textendash}Schwarz{\textendash}Ramond} formalism},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {24--35},
     year = {1989},
     volume = {81},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1989_81_1_a2/}
}
TY  - JOUR
AU  - A. Yu. Morozov
TI  - Pointwise vanishing of two-loop contributions to the one, two, three-point functions in the Neveu–Schwarz–Ramond formalism
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1989
SP  - 24
EP  - 35
VL  - 81
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1989_81_1_a2/
LA  - ru
ID  - TMF_1989_81_1_a2
ER  - 
%0 Journal Article
%A A. Yu. Morozov
%T Pointwise vanishing of two-loop contributions to the one, two, three-point functions in the Neveu–Schwarz–Ramond formalism
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1989
%P 24-35
%V 81
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1989_81_1_a2/
%G ru
%F TMF_1989_81_1_a2
A. Yu. Morozov. Pointwise vanishing of two-loop contributions to the one, two, three-point functions in the Neveu–Schwarz–Ramond formalism. Teoretičeskaâ i matematičeskaâ fizika, Tome 81 (1989) no. 1, pp. 24-35. http://geodesic.mathdoc.fr/item/TMF_1989_81_1_a2/

[1] Martinec E., Phys. Lett., 171B:1 (1986), 189–193 | DOI

[2] Moore G. et al., Nucl. Phys., B306:2 (1988), 387–404 | DOI

[3] Verlinde E., Verlinde H., Phys. Lett., 192B:1 (1987), 95–99 ; Atick J., Rabin J., Sen A., Nucl. Phys., B299:2 (1988), 279–305 ; Verlinde H., A Note on the Integral over the Fermionic Supermoduli, Preprint THU-87/26, University, Utrecht, 1987 ; Atick J., Moore G., Sen A., Nucl. Phys., B307:2 (1988), 221–259 ; B308:1, 1–47 | DOI | MR | DOI | MR | MR | DOI | MR | MR

[4] Knizhnik V., Phys. Lett., 196B:4 (1987), 473–476 ; Perelomov A. et al., Phys. Lett., 197B:1 (1987), 112–114 ; Lechtenfeld O., Parkes A., Phys. Lett., 202B:1 (1987), 75–80 ; Morozov A., Nucl. Phys., B303:2 (1988), 343–372 | DOI | MR | MR | MR | DOI

[5] Perelomov A. et al., Int. J. Mod. Phys., 4A:7 (1989), 1773–1780 | MR

[6] Gava E., Iengo R., Sotkov G., Modular Invariance and the Two-Loop Vanishing of the Cosmological Constant, Preprint IC/88/51, ICTP, Trieste, 1988 | MR

[7] Lebedev D. et. al., Nucl. Phys., B302:1 (1988), 163–188 | DOI | MR

[8] Kniznik F., Commun. Math. Phys., 112:3 (1987), 567–590 | DOI | MR

[9] Fay J., Theta Functions on Riemann Surfaces, Springer-Verlag, Berlin, 1973, S. 1–106. | MR | Zbl

[10] Belokolos E., Enolsky V., Funk. Anal. i ego Priloz., 21:1 (1987), 81–92 | MR

[11] Knizhnik V., Phys. Lett., 180B:2 (1986), 247–252 | DOI | MR

[12] Mumford D., Tata Lectures on Theta, Birkhauser, Boston–Basel–Stuttgart, 1983, P. 1–215. | MR | Zbl