@article{TMF_1989_81_1_a1,
author = {L. A. Sakhnovich},
title = {Study of~the semi-infinite {Toda} chain},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {12--23},
year = {1989},
volume = {81},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1989_81_1_a1/}
}
L. A. Sakhnovich. Study of the semi-infinite Toda chain. Teoretičeskaâ i matematičeskaâ fizika, Tome 81 (1989) no. 1, pp. 12-23. http://geodesic.mathdoc.fr/item/TMF_1989_81_1_a1/
[1] Fermi E., Nauchnye trudy, T. II, Nauka, M., 1972
[2] Toda M., Teoriya nelineinykh reshetok, Mir, M., 1984 | MR
[3] Kaup D. I., Hansen P. I., Physica, D25:1–3 (1987), 364–381 | MR
[4] Berezanskii Yu. M., DAN SSSR, 281:1 (1985), 16–19 | MR
[5] Moser J., Adv. in Math., 16 (1975), 197–220 | DOI | MR | Zbl
[6] Sakhnovich L. A., Nelineinye uravneniya i obratnye zadachi na poluosi, Preprint In-ta matematiki AN USSR 87.30, In-t matematiki AN USSR, Kiev, 1987 | MR
[7] Berezanskii Yu. M., Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965 | MR
[8] Ablovits M., Sigur Kh., Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR
[9] Takhtadzhyan L. A., Faddeev L. D., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl
[10] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1980
[11] Levitan B. M., Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984 | MR
[12] Glazman I. M., Pryamye metody kachestvennogo spektralnogo analiza, Fizmatgiz, M., 1963 | MR