Study of the semi-infinite Toda chain
Teoretičeskaâ i matematičeskaâ fizika, Tome 81 (1989) no. 1, pp. 12-23 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The semi-infinite Toda chain is studied. A procedure for solving the corresponding system of differential–difference equations taking into account both initial and boundary conditions is developed. The case when one end of the chain is fixed up is investigated in detail.
@article{TMF_1989_81_1_a1,
     author = {L. A. Sakhnovich},
     title = {Study of~the semi-infinite {Toda} chain},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {12--23},
     year = {1989},
     volume = {81},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1989_81_1_a1/}
}
TY  - JOUR
AU  - L. A. Sakhnovich
TI  - Study of the semi-infinite Toda chain
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1989
SP  - 12
EP  - 23
VL  - 81
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1989_81_1_a1/
LA  - ru
ID  - TMF_1989_81_1_a1
ER  - 
%0 Journal Article
%A L. A. Sakhnovich
%T Study of the semi-infinite Toda chain
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1989
%P 12-23
%V 81
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1989_81_1_a1/
%G ru
%F TMF_1989_81_1_a1
L. A. Sakhnovich. Study of the semi-infinite Toda chain. Teoretičeskaâ i matematičeskaâ fizika, Tome 81 (1989) no. 1, pp. 12-23. http://geodesic.mathdoc.fr/item/TMF_1989_81_1_a1/

[1] Fermi E., Nauchnye trudy, T. II, Nauka, M., 1972

[2] Toda M., Teoriya nelineinykh reshetok, Mir, M., 1984 | MR

[3] Kaup D. I., Hansen P. I., Physica, D25:1–3 (1987), 364–381 | MR

[4] Berezanskii Yu. M., DAN SSSR, 281:1 (1985), 16–19 | MR

[5] Moser J., Adv. in Math., 16 (1975), 197–220 | DOI | MR | Zbl

[6] Sakhnovich L. A., Nelineinye uravneniya i obratnye zadachi na poluosi, Preprint In-ta matematiki AN USSR 87.30, In-t matematiki AN USSR, Kiev, 1987 | MR

[7] Berezanskii Yu. M., Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965 | MR

[8] Ablovits M., Sigur Kh., Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR

[9] Takhtadzhyan L. A., Faddeev L. D., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl

[10] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1980

[11] Levitan B. M., Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984 | MR

[12] Glazman I. M., Pryamye metody kachestvennogo spektralnogo analiza, Fizmatgiz, M., 1963 | MR