Derivation of the indirect interaction operator by the path integral method. Exact results in the $s-d$ exchange model
Teoretičeskaâ i matematičeskaâ fizika, Tome 80 (1989) no. 3, pp. 405-417 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method of obtaining the effective Hamiltonian of indirect interaction is suggested which is based on the path integral method. The nonperturbative expression for the potential of two-particle indirect interaction of localized magnetic momenta is derived in the $s-d$ exchange model.
@article{TMF_1989_80_3_a8,
     author = {A. F. Izmailov and A. R. Kessel},
     title = {Derivation of~the indirect interaction operator by~the path integral method. {Exact} results in~the $s-d$ exchange model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {405--417},
     year = {1989},
     volume = {80},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1989_80_3_a8/}
}
TY  - JOUR
AU  - A. F. Izmailov
AU  - A. R. Kessel
TI  - Derivation of the indirect interaction operator by the path integral method. Exact results in the $s-d$ exchange model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1989
SP  - 405
EP  - 417
VL  - 80
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1989_80_3_a8/
LA  - ru
ID  - TMF_1989_80_3_a8
ER  - 
%0 Journal Article
%A A. F. Izmailov
%A A. R. Kessel
%T Derivation of the indirect interaction operator by the path integral method. Exact results in the $s-d$ exchange model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1989
%P 405-417
%V 80
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1989_80_3_a8/
%G ru
%F TMF_1989_80_3_a8
A. F. Izmailov; A. R. Kessel. Derivation of the indirect interaction operator by the path integral method. Exact results in the $s-d$ exchange model. Teoretičeskaâ i matematičeskaâ fizika, Tome 80 (1989) no. 3, pp. 405-417. http://geodesic.mathdoc.fr/item/TMF_1989_80_3_a8/

[1] Izmailov A. F., Kessel A. R., FTT, 29:11 (1987), 3513–3516

[2] Izmailov A. F., Kessel A. R., FNT, 14:3 (1988), 288–296

[3] Zener C., Phys. Rev., 81:4 (1951), 440–444 | DOI | Zbl

[4] Berezin F. A., Metod vtorichnogo kvantovaniya, Nauka, M., 1986 | MR | Zbl

[5] Popov V. N., Kontinualnye integraly v kvantovoi teorii polya i statisticheskoi fizike, Atomizdat, M., 1976 | MR

[6] Popov V. N., Fedotov S. A., TMF, 51:1 (1982), 73–85 | MR

[7] Popov V. N., Fedotov S. A., Metod funktsionalnogo integrirovaniya i diagrammnaya tekhnika dlya spinovykh sistem, Preprint R-8-87, LOMI AN SSSR, Leningrad, 1987 | Zbl

[8] Perelomov A. M., Obobschennye kogerentnye sostoyaniya i ikh primeneniya, Nauka, M., 1987 | MR

[9] Yaffe L. G., Rev. Mod. Phys., 54:2 (1982), 407–435 | DOI | MR

[10] Radcliffe J. M., J. Phys., A4:2 (1971), 313–323 | MR

[11] Klauder J. R., Phys. Rev., D19:8 (1979), 2349–2356

[12] Kuratsuij H., Suzuki T., J. Math. Phys., 21:3 (1980), 472–476 | DOI | MR

[13] Ohnuki Y., Kashiwa T., Progr. Theor. Phys., 60:2 (1978), 548–564 | DOI | MR | Zbl

[14] Izyumov Yu. A., Skryabin Yu. N., Statisticheskaya mekhanika magnitouporyadochennykh sistem, Nauka, M., 1987 | MR

[15] Fouler M., Zawadowski A., Sol. Stat. Commun., 9:8 (1971), 471–476 | DOI

[16] Wilson K. G., Rev. Mod. Phys., 47:4 (1975), 773–847 | DOI | MR

[17] Gruner G., Zawadowski A., Rep. Progr. Phys., 37:10 (1974), 1497–1583 | DOI

[18] Ruderman M. A., Kittel C., Phys. Rev., 96:1 (1954), 99–102 | DOI

[19] Kasuya T., Progr. Theor. Phys., 16:1 (1956), 45–57 | DOI | MR | Zbl

[20] Tsvelick A. M., Wiegmann P. B., Adv. Phys., 32:3 (1983), 453–713 | DOI

[21] Andrei N., Furuya K., Lowenstein J. H., Rev. Mod. Phys., 55:2 (1983), 331–402 | DOI | MR