Dynamical symplectic symmetry in~the quasiparticle-phonon nuclear model
Teoretičeskaâ i matematičeskaâ fizika, Tome 80 (1989) no. 3, pp. 353-362

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that under some restrictions the quasiparticle-phonon nuclear model (QPM) has the dynamical symplectic symmetric limit. The conditions for the phonon amplitudes under which the generators of the $Sp(2d, R)$ algebra and of its central inhomogeneous extension – the $WSp(2d,R)$ algebra – can be constructed from the phonon and biphonon QPM operators are derived. The contribution of the pure $Sp(2d,R)$ symmetry into the general $WSp(2d,R)$ symmetry of the QPM is discussed. The exact Dyson boson realizations of the phonon and biphonon operators in the spaces of the Perelomov partially coherent states and Barut–Girardello coherent states are obtained.
@article{TMF_1989_80_3_a2,
     author = {Nguyen Din Dang},
     title = {Dynamical symplectic symmetry in~the quasiparticle-phonon nuclear model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {353--362},
     publisher = {mathdoc},
     volume = {80},
     number = {3},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1989_80_3_a2/}
}
TY  - JOUR
AU  - Nguyen Din Dang
TI  - Dynamical symplectic symmetry in~the quasiparticle-phonon nuclear model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1989
SP  - 353
EP  - 362
VL  - 80
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1989_80_3_a2/
LA  - ru
ID  - TMF_1989_80_3_a2
ER  - 
%0 Journal Article
%A Nguyen Din Dang
%T Dynamical symplectic symmetry in~the quasiparticle-phonon nuclear model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1989
%P 353-362
%V 80
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1989_80_3_a2/
%G ru
%F TMF_1989_80_3_a2
Nguyen Din Dang. Dynamical symplectic symmetry in~the quasiparticle-phonon nuclear model. Teoretičeskaâ i matematičeskaâ fizika, Tome 80 (1989) no. 3, pp. 353-362. http://geodesic.mathdoc.fr/item/TMF_1989_80_3_a2/