Construction of linear response theory for classical systems by the nonequilibrium statistical operator method
Teoretičeskaâ i matematičeskaâ fizika, Tome 80 (1989) no. 3, pp. 452-460 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Theory of linear response to the external mechanical perturbation is formulated for classical weakly non-equilibrium systems by means of the NSO method. Comparison with the Kubo linear response theory is made. Equations for the correlation Green functions are derived and the connection with the theory constructed for the latter in [4] is established.
@article{TMF_1989_80_3_a12,
     author = {G. O. Balabanyan},
     title = {Construction of~linear response theory for classical systems by~the nonequilibrium statistical operator method},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {452--460},
     year = {1989},
     volume = {80},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1989_80_3_a12/}
}
TY  - JOUR
AU  - G. O. Balabanyan
TI  - Construction of linear response theory for classical systems by the nonequilibrium statistical operator method
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1989
SP  - 452
EP  - 460
VL  - 80
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1989_80_3_a12/
LA  - ru
ID  - TMF_1989_80_3_a12
ER  - 
%0 Journal Article
%A G. O. Balabanyan
%T Construction of linear response theory for classical systems by the nonequilibrium statistical operator method
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1989
%P 452-460
%V 80
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1989_80_3_a12/
%G ru
%F TMF_1989_80_3_a12
G. O. Balabanyan. Construction of linear response theory for classical systems by the nonequilibrium statistical operator method. Teoretičeskaâ i matematičeskaâ fizika, Tome 80 (1989) no. 3, pp. 452-460. http://geodesic.mathdoc.fr/item/TMF_1989_80_3_a12/

[1] Zubarev D. N., Neravnovesnaya statisticheskaya termodinamika, Nauka, M., 1971

[2] Zubarev D. N., “Sovremennye metody statisticheskoi teorii neravnovesnykh protsessov”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 15, VINITI, M., 1980, 131–226 | MR

[3] Zubarev D. N., Tserkovnikov Yu. A., “Metod dvukhvremennykh funktsii Grina v ravnovesnoi i neravnovesnoi statisticheskoi mekhanike”, Tr. MIAN, 175, No 3, 1986, 134–177 | MR

[4] Balabanyan G. O., TMF, 80:1 (1989), 118–137 | MR

[5] Kubo R., J. Phys. Japan, 12:6 (1957), 570–586 | DOI | MR

[6] Kubo R., “Linear response theory of irreversible processes”, Statistical mechanics of equilibrium and non-equilibrium, Proc. Int. Symposium on statistical mechanics and thermodynamics (Aachen 1964), ed. J. Meixner, North-Holland Publising. Co., Amsterdam, 1965, 81–99 | MR

[7] Zubarev D. N., Kalashnikov V. P., TMF, 7:3 (1971), 372–394 | Zbl

[8] Kawasaki K., Gunton J. D., Phys. Lett. A, 40A:1 (1972), 35–36 ; Phys. Rev. A, 8A:3 (1973), 2048–2064 | DOI | DOI | MR

[9] Mori H., Progr. Theor. Phys., 33:3 (1965), 423–455 | DOI | MR | Zbl

[10] Kalashnikov V. P., Dinamicheskaya teoriya izotermicheskogo otklika na mekhanicheskoe vozmuschenie i funktsii Grina, Preprint R4-7803, OIYaI, Dubna, 1974 | MR

[11] Zubarev D. N., Kalashnikov V. P., TMF, 5:3 (1970), 406–416 | MR

[12] Tyablikov S. V., Metody kvantovoi teorii magnetizma, Nauka, M., 1975 | MR