Noether analysis of zilch conservation laws and their generalization for the electromagnetic field.
Teoretičeskaâ i matematičeskaâ fizika, Tome 80 (1989) no. 3, pp. 340-352 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Noether analysis of conservation laws for the electromagnetic field is carried out basing on the Lagrange function in terms of field strengths $\mathbf{E,H}$ which is scalar with respect to the total Poincare group $\tilde {\mathrm P}(1,3)$. It is shown that the $\tilde {\mathrm P}$-scalar Lagrange function differs from the other Lagrange functions discussed before in such a way that it is exactly conservation law for the energy momentum $P_\mu$ of the electromagnetic field which this function puts into correspondence with the generators $\partial_\mu$ of space-time translations according to the Noether theorem; moreover, this function makes it possible to establish an adequate connection between the zilch conservation laws and symmetries of the Maxwell equations and also to introduce the minimal and local $\tilde {\mathrm P}$-scalar interaction of the electromagnetic field $\mathbf{(E, H)}$ and spinor field. Analysis of the Noether correspondence between symmetry operators and conservation laws, together with other criteria, makes it possible to single out a suitable Lagrange function for the tensor electromagnetic field $F=\mathbf{(E, H)}$ in the set of $s$-equivalent Lagrangians.
@article{TMF_1989_80_3_a1,
     author = {I. Yu. Krivsky and V. M. Simulik},
     title = {Noether analysis of~zilch conservation laws and their generalization for the electromagnetic field.},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {340--352},
     year = {1989},
     volume = {80},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1989_80_3_a1/}
}
TY  - JOUR
AU  - I. Yu. Krivsky
AU  - V. M. Simulik
TI  - Noether analysis of zilch conservation laws and their generalization for the electromagnetic field.
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1989
SP  - 340
EP  - 352
VL  - 80
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1989_80_3_a1/
LA  - ru
ID  - TMF_1989_80_3_a1
ER  - 
%0 Journal Article
%A I. Yu. Krivsky
%A V. M. Simulik
%T Noether analysis of zilch conservation laws and their generalization for the electromagnetic field.
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1989
%P 340-352
%V 80
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1989_80_3_a1/
%G ru
%F TMF_1989_80_3_a1
I. Yu. Krivsky; V. M. Simulik. Noether analysis of zilch conservation laws and their generalization for the electromagnetic field.. Teoretičeskaâ i matematičeskaâ fizika, Tome 80 (1989) no. 3, pp. 340-352. http://geodesic.mathdoc.fr/item/TMF_1989_80_3_a1/

[1] Krivskii I. Yu., Simulik V. M., TMF, 80:2, 274–287 | MR

[2] Krivskii I. Yu., Simulik V. M., O lagranzhevom podkhode dlya elektromagnitnogo polya v terminakh napryazhennostei i zakonakh sokhraneniya, Preprint KIYaI-85-13, IYaI AN USSR, Kiev, 1985 | MR

[3] Krivskii I. Yu., Simulik V. M., UFZh, 30:10 (1985), 1457–1459 | MR

[4] Simulik V. M., Teoretiko-gruppovye issledovaniya uravnenii matematicheskoi fiziki, IM AN USSR, Kiev, 1985, 130–133 | MR

[5] Krivskii I. Yu., Simulik V. M., Vopr. atomn. nauki i tekhn., ser. Obsch i yadern. fiz., 1986, no. 1(34), 29–30

[6] Krivskii I. Yu., Simulik V. M., $P_+^\uparrow$-skalyarnaya funktsiya Lagranzha i zakony sokhraneniya dlya elektromagnitnogo polya v terminakh napryazhennostei, Preprint KIYaI-86-35, IYaI AN USSR, Kiev, 1986

[7] Krivskii I. Yu., Simulik V. M., Relyativistski-invariantnaya formulirovka lagranzheva podkhoda k elektrodinamike v terminakh napryazhennostei, Preprint KIYaI-86-41, IYaI AN USSR, Kiev, 1986 | MR

[8] Lipkin D. M., J. Math. Phys., 5:5 (1964), 696–700 | DOI | MR | Zbl

[9] Fradkin D. M., J. Math. Phys., 6:6 (1965), 879–890 | DOI | MR

[10] Kibble T. W. B., J. Math. Phys., 6:7 (1965), 1022–1026 | DOI | MR

[11] Candlin P. I., Nuovo Cim., 37:4 (1965), 1390–1395 | DOI | MR | Zbl

[12] O'Connell R. F., Tompkins D. R., Nuovo Cim., 39:1 (1965), 391–394 | DOI | MR

[13] O'Connel R. F., Tompkins D. R., J. Math. Phys., 6:12 (1965), 1952–1954 | DOI | MR

[14] Fairlie D. B., Nuovo Cim., 37:3 (1965), 897–904 | DOI | MR | Zbl

[15] Heaviside O., Phil. Trans. Roy. Soc. London, 183A (1892), 423–480 | DOI | Zbl

[16] Larmor I., Collected papers, Clarendon Press, London, 1928

[17] Rainich G. Y., Trans. Amer. Math. Soc., 27 (1925), 106–136 | DOI | MR | Zbl

[18] Bakai A. S., Stepanovskii Yu. P., Adiabaticheskie invarianty, Naukova dumka, Kiev, 1981 | MR

[19] Gersten A., Conserved currents of the Maxwell equations with electric and magnetic sources, Preprint CERN-TH. 4688/87, CERN, Geneva, 1987

[20] Krivskii I. Yu., Simulik V. M., O teoreme Neter dlya preobrazovanii trekh tipov, Preprint KIYaI-85-12, IYaI AN USSR, Kiev, 1985 | MR

[21] Krivskii I. Yu., Teoretiko-gruppovye issledovaniya uravnenii matematicheskoi fiziki, IM AN USSR, Kiev, 1985, 134–139 | MR

[22] Hojman S., Phys. Rev. D, 27:2 (1983), 451–453 | DOI | MR

[23] Hojman S., J. Phys. A, 17:12 (1984), 2399–2412 | DOI | MR | Zbl

[24] Hojman S., Gomes J., J. Math. Phys., 25:6 (1984), 1776–1779 | DOI | MR | Zbl

[25] Calkin M. G., Amer. J. Phys., 33:11 (1965), 958–960 | DOI | MR

[26] De Witt B. S., Phys. Rev., 125:6 (1962), 2189–2191 | DOI | MR

[27] Mandelstam S., Ann. Phys. (USA), 19:1 (1962), 1–24 | DOI | MR | Zbl

[28] Ogievetskii V. I., Polubarinov I. V., ZhETF, 43:4(10) (1962), 1365–1370

[29] Shirokov M. I., J. Phys. A, 13:6 (1980), 2067–2077 | DOI | MR

[30] Foldy L. L., Wonthuysen S. A., Phys. Rev., 78:1 (1950), 29–36 | DOI | Zbl