Noether analysis of zilch conservation laws and their generalization for the electromagnetic field. I. Use of different formulations of the principle of least action
Teoretičeskaâ i matematičeskaâ fizika, Tome 80 (1989) no. 2, pp. 274-287 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Conservation laws for the electromagnetic field are obtained in the framework of the Lagrangian approach in terms of field strengths (and not of the potentials) on the basis of the 32-dimensional algebra of invariance of the Maxwell equations and the Noether theorem. The correspondence between symmetry operators and conservation laws is analysed which is determined by various Lagrangians. New sets of conservation laws are found.
@article{TMF_1989_80_2_a8,
     author = {I. Yu. Krivsky and V. M. Simulik},
     title = {Noether analysis of~zilch conservation laws and their generalization for the electromagnetic field. {I.~Use} of~different formulations of~the principle of~least action},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {274--287},
     year = {1989},
     volume = {80},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1989_80_2_a8/}
}
TY  - JOUR
AU  - I. Yu. Krivsky
AU  - V. M. Simulik
TI  - Noether analysis of zilch conservation laws and their generalization for the electromagnetic field. I. Use of different formulations of the principle of least action
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1989
SP  - 274
EP  - 287
VL  - 80
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1989_80_2_a8/
LA  - ru
ID  - TMF_1989_80_2_a8
ER  - 
%0 Journal Article
%A I. Yu. Krivsky
%A V. M. Simulik
%T Noether analysis of zilch conservation laws and their generalization for the electromagnetic field. I. Use of different formulations of the principle of least action
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1989
%P 274-287
%V 80
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1989_80_2_a8/
%G ru
%F TMF_1989_80_2_a8
I. Yu. Krivsky; V. M. Simulik. Noether analysis of zilch conservation laws and their generalization for the electromagnetic field. I. Use of different formulations of the principle of least action. Teoretičeskaâ i matematičeskaâ fizika, Tome 80 (1989) no. 2, pp. 274-287. http://geodesic.mathdoc.fr/item/TMF_1989_80_2_a8/

[1] Fuschich V. I., Nikitin A. G., Simmetriya uravnenii Maksvella, Naukova dumka, Kiev, 1983 | MR

[2] Vladimirov V. S., Volovich I. V., UMN, 40:4(244) (1985), 17–26 | MR | Zbl

[3] Vladimirov V. S., Volovich I. V., DAN SSSR, 280:2 (1985), 328–333 | MR | Zbl

[4] Abellanas L., Galindo A., Commun. Math. Phys., 79:3 (1981), 341–351 | DOI | MR | Zbl

[5] Hojman S., J. Phys., A17:12 (1984), 2399–2412 | MR | Zbl

[6] Hojman S., Gomes J., J. Math. Phys., 25:6 (1984), 1776–1779 | DOI | MR | Zbl

[7] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978, 400 pp. | MR

[8] Ibragimov N. Kh., Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR

[9] Khamitova R. S., TMF, 52:2 (1982), 244–251 | MR | Zbl

[10] Bessel-Hagen E., Math. Ann., 84 (1921), 258–276 | DOI | MR | Zbl

[11] Plybon B. F., Amer. J. Phys., 42:11 (1974), 998–1001 | DOI | MR

[12] Lipkin D. M., J. Math. Phys., 5:5 (1964), 696–700 | DOI | MR | Zbl

[13] Fradkin D. M., J. Math. Phys., 6:6 (1965), 879–890 | DOI | MR

[14] Kibble T. W. B., J. Math. Phys., 6:7 (1965), 1022–1026 | DOI | MR

[15] Candlin P. I., Nuovo Cim., 37:4 (1965), 1390–1395 | DOI | MR | Zbl

[16] O'Connell R. F., Tompkins D. R., Nuovo Cim., 39:1 (1965), 391–394 | DOI | MR

[17] O'Connell R. F., Tompkins D. R., J. Math. Phys., 6:12 (1965), 1952–1954 | DOI | MR

[18] Fairlie D. B., Nuovo Cim., 37:3 (1965), 897–904 | DOI | MR | Zbl

[19] Mickelsson J., Niederle J., Lett. Math. Phys., 8:3 (1984), 195–205 | DOI | MR | Zbl

[20] Anderson N., Arthurs A. M., Int. J. Electron., 57:4 (1984), 477–478 | DOI

[21] Gordon T. J., Ann. Phys. (USA), 155:2 (1984), 85–107 | DOI | MR | Zbl

[22] Gordon T. J., Class. Quantum Grav., 1:5 (1984), 531–544 | DOI | MR | Zbl

[23] Noether E., “Invariante Variationsprobleme”, Kgl. Ges. Wiss. Nachr. Göttingen Math. Phys., 2 (1918), 235–257; Variatsionnye printsipy mekhaniki, Fizmatgiz, M., 1959, 611–630 | MR

[24] Hill E. L., Rev. Mod. Phys., 23:3 (1951), 253–260 | DOI | MR | Zbl

[25] Ibragimov N. Kh., TMF, 1:3 (1969), 350–359 | MR

[26] Krivskii I. Yu., Simulik V. M., O teoreme Neter dlya preobrazovanii trekh tipov, Preprint KIYaI-85-12, IYaI AN USSR, Kiev, 1985

[27] Krivskii I. Yu., Teoretiko-gruppovye issledovaniya uravnenii matematicheskoi fiziki, IM AN USSR, Kiev, 1985, 134–139 | MR

[28] Krivskii I. Yu., Simulik V. M., O lagranzhevom podkhode dlya elektromagnitnogo polya v terminakh napryazhennostei i zakonakh sokhraneniya, Preprint KIYaI-85-13, IYaI AN USSR, Kiev, 1985 | MR

[29] Krivskii I. Yu., Simulik V. M., UFZh, 30:10 (1985), 1457–1459 | MR

[30] Simulik V. M., Teoretiko-gruppovye issledovaniya uravnenii matematicheskoi fiziki, IM AN USSR, Kiev, 1985, 130–133 | MR

[31] Krivskii I. Yu., Simulik V. M., Vopr. atomn. nauki i tekhn., ser.: Obsch. i yadern. fiz., 1986, no. 1 (34), 29–30

[32] Krivskii I. Yu., Simulik V. M., $P_+^\uparrow$-skalyarnaya funktsiya Lagranzha i zakony sokhraneniya dlya elektromagnitnogo polya v terminakh napryazhennostei, Preprint KIYaI-86-35, IYaI AN USSR, Kiev, 1986

[33] Krivskii I. Yu., Simulik V. M., Relyativistski invariantnaya formulirovka lagranzheva podkhoda k elektrodinamike v terminakh napryazhennostei, Preprint KIYaI-86-41, IYaI AN USSR, Kiev, 1986 | MR

[34] Flato M., Simon J., Sternheimer D., Ann. Phys. (USA), 61:1 (1970), 78–97 | DOI | MR | Zbl

[35] Bayen F., Flato M., J. Math. Phys., 17:7 (1976), 1112–1114 | DOI | MR

[36] Heaviside O., Phil. Trans. Roy. Soc. London, 183A (1982), 423–430

[37] Larmor I., Collected papers, Clarendon Press, London, 1928

[38] Rainich G. Y., Trans. Amer. Math. Soc., 27 (1925), 106–136 | DOI | MR | Zbl

[39] Danilov Yu. A., Gruppovye svoistva uravnenii Maksvella i Nave–Stoksa, Preprint IAE-1452, In-t atomn. energii im. I. V. Kurchatova, M., 1967

[40] Ibragimov N. Kh., DAN SSSR, 178:3 (1968), 566–568 | MR

[41] Laporte O., Uhlenbeck G. E., Phys. Rev., 37 (1931), 1380–1397 | DOI

[42] Oppenheimer J. R., Phys. Rev., 38 (1931), 725–746 | DOI

[43] Mignani R., Recami E., Baldo M., Lett. Nuovo Cim., 11:12, 568–572 | DOI | MR

[44] Borgardt A. A., ZhETF, 34:2 (1958), 334–341

[45] Moses H. E., Nuovo Cim. Suppl., 7:1 (1958), 1–18 | DOI | MR | Zbl

[46] Lomont J. S., Phys. Rev., 111:6 (1958), 1710–1716 | DOI | MR | Zbl

[47] Sudbery A., J. Phys. A, 19:2 (1986), L33–L36 | DOI | MR